IcosidodecadodecahedronIn geometry, the icosidodecadodecahedron (or icosified dodecadodecahedron) is a nonconvex uniform polyhedron, indexed as U44. It has 44 faces (12 pentagons, 12 pentagrams and 20 hexagons), 120 edges and 60 vertices. Its vertex figure is a crossed quadrilateral. It shares its vertex arrangement with the uniform compounds of 10 or 20 triangular prisms. It additionally shares its edges with the rhombidodecadodecahedron (having the pentagonal and pentagrammic faces in common) and the rhombicosahedron (having the hexagonal faces in common).
Chamfered dodecahedronIn geometry, the chamfered dodecahedron is a convex polyhedron with 80 vertices, 120 edges, and 42 faces: 30 hexagons and 12 pentagons. It is constructed as a chamfer (edge-truncation) of a regular dodecahedron. The pentagons are reduced in size and new hexagonal faces are added in place of all the original edges. Its dual is the pentakis icosidodecahedron. It is also called a truncated rhombic triacontahedron, constructed as a truncation of the rhombic triacontahedron.
Geodesic domeA geodesic dome is a hemispherical thin-shell structure (lattice-shell) based on a geodesic polyhedron. The triangular elements of the dome are structurally rigid and distribute the structural stress throughout the structure, making geodesic domes able to withstand very heavy loads for their size. The first geodesic dome was designed after World War I by Walther Bauersfeld, chief engineer of Carl Zeiss Jena, an optical company, for a planetarium to house his planetarium projector.
Truncated great dodecahedronIn geometry, the truncated great dodecahedron is a nonconvex uniform polyhedron, indexed as U37. It has 24 faces (12 pentagrams and 12 decagons), 90 edges, and 60 vertices. It is given a Schläfli symbol t{5,5/2}. It shares its vertex arrangement with three other uniform polyhedra: the nonconvex great rhombicosidodecahedron, the great dodecicosidodecahedron, and the great rhombidodecahedron; and with the uniform compounds of 6 or 12 pentagonal prisms.
Pentakis dodecahedronIn geometry, a pentakis dodecahedron or kisdodecahedron is a polyhedron created by attaching a pentagonal pyramid to each face of a regular dodecahedron; that is, it is the Kleetope of the dodecahedron. Specifically, the term typically refers to a particular Catalan solid, namely the dual of a truncated icosahedron. Let be the golden ratio. The 12 points given by and cyclic permutations of these coordinates are the vertices of a regular icosahedron.
Geodesic polyhedronA geodesic polyhedron is a convex polyhedron made from triangles. They usually have icosahedral symmetry, such that they have 6 triangles at a vertex, except 12 vertices which have 5 triangles. They are the dual of corresponding Goldberg polyhedra with mostly hexagonal faces. Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes, hemispherical architectural structures designed by Buckminster Fuller, which geodesic polyhedra are named after.