Concept

Ruhrstahl X-4

Summary
The Ruhrstahl Ru 344 X-4 or Ruhrstahl-Kramer RK 344 was a wire-guided air-to-air missile designed by Germany during World War II. The X-4 did not see operational service and thus was not proven in combat but inspired considerable post-war work around the world, and was the basis for the development of several ground-launched anti-tank missiles. During 1943, the RAF's Bomber Command and the US Air Force mounted a series of heavy raids against Germany. Despite heavy bomber losses, these prompted Luftwaffe research into considerably more powerful anti-bomber weaponry in order to reduce the cost in lost fighter aircraft and aircrew. A massive development effort resulted in a number of heavy-calibre autocannon designs, air-to-air rockets, SAMs, and the X-4. Work on the X-4 began in June 1943, by Dr Max Kramer at Ruhrstahl AG. The idea was to build a missile with enough range to allow it to be fired from outside the range of the bombers' guns (what is now called a stand-off weapon). The bombers' defensive guns had a maximum effective range of about . The missile was to be guided with enough accuracy to guarantee a "kill". The X-4 met these specifications and more. Its BMW 109-448 rocket motor accelerated the missile to over and kept the X-4 at this speed during its "cruise", between . The rocket burned a hypergolic mixture of S-Stoff (nitric acid with 5% iron(III) chloride) and R-Stoff (an organic amine-mixture of 50% dimethylaminobenzene and 50% triethylamine called Tonka 250) as propellant, delivering thrust initially, declining to over the 17-second burn. As there was no room for a fuel pump, the fuels were forced into the motor by pistons inside long tubes, the tubes being coiled (similar to a coil spring) to fit inside the airframe. S-Stoff was so corrosive, it dissolved all base metals and was extremely difficult and dangerous to handle. The Germans planned to replace the motor with a solid fuel design as soon as possible. The missile was spin-stabilized at about 60 rpm, or one rotation a second, so any asymmetrical thrust from the engine or inaccuracies in the control surfaces would be evened out.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.