Concept

Acceptance angle (solar concentrator)

Acceptance angle is the maximum angle at which incoming sunlight can be captured by a solar concentrator. Its value depends on the concentration of the optic and the refractive index in which the receiver is immersed. Maximizing the acceptance angle of a concentrator is desirable in practical systems and it may be achieved by using nonimaging optics. For concentrators that concentrate light in two dimensions, the acceptance angle may be different in the two directions. The "acceptance angle" figure illustrates this concept. The concentrator is a lens with a receiver R. The left section of the figure shows a set of parallel rays incident on the concentrator at an angle α < θ to the optical axis. All rays end up on the receiver and, therefore, all light is captured. In the center, this figure shows another set of parallel rays, now incident on the concentrator at an angle α = θ to the optical axis. For an ideal concentrator, all rays are still captured. However, on the right, this figure shows yet another set of parallel rays, now incident on the concentrator at an angle α > θ to the optical axis. All rays now miss the receiver and all light is lost. Therefore, for incidence angles α < θ all light is captured while for incidence angles α > θ all light is lost. The concentrator is then said to have a (half) acceptance angle θ, or a total acceptance angle 2θ (since it accepts light within an angle ±θ to the optical axis). Ideally, a solar concentrator has a transmission curve cI as shown in the "transmission curves" figure. Transmission (efficiency) is τ = 1 for all incidence angles α < θI and τ = 0 for all incidence angles α > θI. In practice, real transmission curves are not perfect and they typically have a shape similar to that of curve cR, which is normalized so that τ = 1 for α = 0. In that case, the real acceptance angle θR is typically defined as the angle for which transmission τ drops to 90% of its maximum.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (4)
Compact linear Fresnel reflector
A compact linear Fresnel reflector (CLFR) – also referred to as a concentrating linear Fresnel reflector – is a specific type of linear Fresnel reflector (LFR) technology. They are named for their similarity to a Fresnel lens, in which many small, thin lens fragments are combined to simulate a much thicker simple lens. These mirrors are capable of concentrating the sun's energy to approximately 30 times its normal intensity. Linear Fresnel reflectors use long, thin segments of mirrors to focus sunlight onto a fixed absorber located at a common focal point of the reflectors.
Concentrator photovoltaics
Concentrator photovoltaics (CPV) (also known as concentration photovoltaics) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or curved mirrors to focus sunlight onto small, highly efficient, multi-junction (MJ) solar cells. In addition, CPV systems often use solar trackers and sometimes a cooling system to further increase their efficiency. Systems using high-concentration photovoltaics (HCPV) possess the highest efficiency of all existing PV technologies, achieving near 40% for production modules and 30% for systems.
Nonimaging optics
Nonimaging optics (also called anidolic optics) is the branch of optics concerned with the optimal transfer of light radiation between a source and a target. Unlike traditional imaging optics, the techniques involved do not attempt to form an of the source; instead an optimized optical system for optimal radiative transfer from a source to a target is desired.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.