Hall wordIn mathematics, in the areas of group theory and combinatorics, Hall words provide a unique monoid factorisation of the free monoid. They are also totally ordered, and thus provide a total order on the monoid. This is analogous to the better-known case of Lyndon words; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are binary trees; taken together, they form the Hall set.
Lyndon wordIn mathematics, in the areas of combinatorics and computer science, a Lyndon word is a nonempty string that is strictly smaller in lexicographic order than all of its rotations. Lyndon words are named after mathematician Roger Lyndon, who investigated them in 1954, calling them standard lexicographic sequences. Anatoly Shirshov introduced Lyndon words in 1953 calling them regular words. Lyndon words are a special case of Hall words; almost all properties of Lyndon words are shared by Hall words.
Commutator collecting processIn group theory, a branch of mathematics, the commutator collecting process is a method for writing an element of a group as a product of generators and their higher commutators arranged in a certain order. The commutator collecting process was introduced by Philip Hall in 1934 and articulated by Wilhelm Magnus in 1937. The process is sometimes called a "collection process". The process can be generalized to define a totally ordered subset of a free non-associative algebra, that is, a free magma; this subset is called the Hall set.
Forgetful functorIn mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Universal enveloping algebraIn mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators.