Concept

Miniature snap-action switch

A miniature snap-action switch, also trademarked and frequently known as a micro switch or microswitch, is an electric switch that is actuated by very little physical force, through the use of a tipping-point mechanism, sometimes called an "over-center" mechanism. Switching happens reliably at specific and repeatable positions of the actuator, which is not necessarily true of other mechanisms. They are very common due to their low cost but high durability, greater than 1 million cycles, and up to 10 million cycles for heavy-duty models. This durability is a natural consequence of the design. The defining feature of micro switches is that a relatively small movement at the actuator button produces a relatively large movement at the electrical contacts, which occurs at high speed (regardless of the speed of actuation). Most successful designs also exhibit hysteresis, meaning that a small reversal of the actuator is insufficient to reverse the contacts; there must be a significant movement in the opposite direction. Both of these characteristics help to achieve a clean and reliable interruption to the switched circuit. The first micro switch was invented by Phillip Kenneth McGall in 1932 in Freeport, Illinois, patent 1,960,020. McGall was an employee of the Burgess Battery Company at the time. In 1937 W.B. Schulte, McGall's employer, started the company MICRO SWITCH. The company and the Micro Switch trademark has been owned by Honeywell Sensing and Control since 1950. The name has become a generic trademark for any snap-action switch. Companies other than Honeywell now manufacture miniature snap-action switches. In one type of microswitch, internally there are two conductive springs. A long flat spring is hinged at one end of the switch (the left, in the photograph) and has electrical contacts on the other. A small curved spring, preloaded (i.e., compressed during assembly) so it attempts to extend itself (at the top, just right of center in the photo), is connected between the flat spring near the contacts and a fulcrum near the midpoint of the flat spring.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.