Concept

Space tug

Summary
A space tug is a type of spacecraft used to transfer spaceborne cargo from one orbit to another orbit with different energy characteristics. An example would be moving a spacecraft from a low Earth orbit (LEO) to a higher-energy orbit like a geostationary transfer orbit, a lunar transfer, or an escape trajectory. The term is often used to refer to reusable, space-based vehicles. Some previously proposed or built space tugs include the NASA 1970s STS proposal or the proposed Russian Parom, and has sometimes been used to refer to expendable upper stages, such as Fregat, or Spaceflight Industries Sherpa. The space tug was first envisioned in the post-World War II era as a support vehicle for a permanent, Earth-orbiting space station. It was used by science fiction writer Murray Leinster as the title of a novel published in 1953 as the sequel to Space Platform, another novel about such a space station. Space tugs can be roughly categorised into a few types: Large tugs that dock with satellites in orbit which may be able to perform services like refuelling or repairs or enhancements as well as changing the satellites orbit whether that is to extend life of satellite or to deorbit it. Rocket Kick Stage used to distribute different payloads to different orbits. An example would be Photon Satellite Bus but this might just be considered part of the rocket system rather than a space tug and this article does not really consider these in detail. Smaller tugs that are mainly cubesat deployers with some propulsion to deploy the cubesats to different orbits. Mission Extension Vehicle In 2011 ViviSat a joint project between U.S. Space and ATK proposed the Mission Extension Vehicle. In 2016 ViviSat was dissolved when U.S. Space declared bankruptcy and ATK merged with Orbital Science Corporation to form Orbital ATK. In 2017 Orbital ATK got the go ahead from the FCC to begin development of the spacecraft with new partner Northrop Grumman who was developing a tug of their own.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.