Event-driven programmingIn computer programming, event-driven programming is a programming paradigm in which the flow of the program is determined by events such as user actions (mouse clicks, key presses), sensor outputs, or message passing from other programs or threads. Event-driven programming is the dominant paradigm used in graphical user interfaces and other applications (e.g., JavaScript web applications) that are centered on performing certain actions in response to user input. This is also true of programming for device drivers (e.
Register allocationIn compiler optimization, register allocation is the process of assigning local automatic variables and expression results to a limited number of processor registers. Register allocation can happen over a basic block (local register allocation), over a whole function/procedure (global register allocation), or across function boundaries traversed via call-graph (interprocedural register allocation). When done per function/procedure the calling convention may require insertion of save/restore around each call-site.
Forward declarationIn computer programming, a forward declaration is a declaration of an identifier (denoting an entity such as a type, a variable, a constant, or a function) for which the programmer has not yet given a complete definition. It is required for a compiler to know certain properties of an identifier (size for memory allocation, data type for type checking, such as type signature of functions), but not other details, like the particular value it holds (in case of variables or constants) or definition (in the case of functions).
Void typeThe void type, in several programming languages derived from C and Algol68, is the return type of a function that returns normally, but does not provide a result value to its caller. Usually such functions are called for their side effects, such as performing some task or writing to their output parameters. The usage of the void type in such context is comparable to procedures in Pascal and syntactic constructs which define subroutines in Visual Basic. It is also similar to the unit type used in functional programming languages and type theory.
MemoizationIn computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results of expensive function calls to pure functions and returning the cached result when the same inputs occur again. Memoization has also been used in other contexts (and for purposes other than speed gains), such as in simple mutually recursive descent parsing. It is a type of caching, distinct from other forms of caching such as buffering and page replacement.
DecompilerA decompiler is a computer program that translates an executable file to high-level source code. It does therefore the opposite of a typical compiler, which translates a high-level language to a low-level language. While disassemblers translate an executable into assembly language, decompilers go a step further and translate the code into a higher level language such as C or Java, requiring more sophisticated techniques. Decompilers are usually unable to perfectly reconstruct the original source code, thus will frequently produce obfuscated code.
Late bindingIn computing, late binding or dynamic linkage—though not an identical process to dynamically linking imported code libraries—is a computer programming mechanism in which the method being called upon an object, or the function being called with arguments, is looked up by name at runtime. In other words, a name is associated with a particular operation or object at runtime, rather than during compilation. The name dynamic binding is sometimes used, but is more commonly used to refer to dynamic scope.
Object lifetimeIn object-oriented programming (OOP), the object lifetime (or life cycle) of an object is the time between an object's creation and its destruction. Rules for object lifetime vary significantly between languages, in some cases between implementations of a given language, and lifetime of a particular object may vary from one run of the program to another. In some cases, object lifetime coincides with variable lifetime of a variable with that object as value (both for static variables and automatic variables), but in general, object lifetime is not tied to the lifetime of any one variable.
Generator (computer programming)In computer science, a generator is a routine that can be used to control the iteration behaviour of a loop. All generators are also iterators. A generator is very similar to a function that returns an array, in that a generator has parameters, can be called, and generates a sequence of values. However, instead of building an array containing all the values and returning them all at once, a generator yields the values one at a time, which requires less memory and allows the caller to get started processing the first few values immediately.
Label (computer science)In programming languages, a label is a sequence of characters that identifies a location within source code. In most languages, labels take the form of an identifier, often followed by a punctuation character (e.g., a colon). In many high-level languages, the purpose of a label is to act as the destination of a GOTO statement. In assembly language, labels can be used anywhere an address can (for example, as the operand of a JMP or MOV instruction). Also in Pascal and its derived variations.