Concept

Friedrich Hund

Summary
Friedrich Hermann Hund (4 February 1896 – 31 March 1997) was a German physicist from Karlsruhe known for his work on atoms and molecules. Hund worked at the Universities of Rostock, Leipzig, Jena, Frankfurt am Main, and Göttingen. Hund worked with such prestigious physicists as Schrödinger, Dirac, Heisenberg, Max Born, and Walter Bothe. At that time, he was Born's assistant, working with quantum interpretation of band spectra of diatomic molecules. After his studies of mathematics, physics, and geography in Marburg and Göttingen, he worked as a private lecturer for theoretical physics in Göttingen (1925), professor in Rostock (1927), Leipzig University (1929), Jena (1946), Frankfurt/Main (1951) and from 1957 again in Göttingen. Additionally, he stayed in Copenhagen (1926) with Niels Bohr and lectured on the atom at Harvard University (1928). He published more than 250 papers and essays in total. Hund made pivotal contributions to quantum theory - especially concerning the structure of the atom and of molecular spectra. In fact, Robert S. Mulliken, who was awarded the 1966 Nobel Prize in chemistry for molecular orbital theory, always proclaimed the great influence Hund's work had on his own and that he would have gladly shared the Nobel prize with Hund. In recognition of the importance of Hund's contributions, MO theory is often referred to as the Hund-Mulliken MO theory. Hund's rule of maximum multiplicity is another eponym and, in 1926, Hund discovered the so-called tunnel effect or quantum tunnelling. The Hund's cases, which are particular regimes in diatomic molecular angular momentum coupling, and Hund's rules, which govern atomic electron configurations, are important in spectroscopy and quantum chemistry. In chemistry, the first rule, Hund's rule of maximum multiplicity, is especially important and is often referred to as simply Hund's Rule. Hund married mathematician Ingeborg Seynsche (1905–1994) in Barmen on 17 March 1931. The family had six children: chess player and mathematician Gerhard Hund (b.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.