Concept

Locally profinite group

In mathematics, a locally profinite group is a Hausdorff topological group in which every neighborhood of the identity element contains a compact open subgroup. Equivalently, a locally profinite group is a topological group that is Hausdorff, locally compact, and totally disconnected. Moreover, a locally profinite group is compact if and only if it is profinite; this explains the terminology. Basic examples of locally profinite groups are discrete groups and the p-adic Lie groups. Non-examples are real Lie groups, which have the no small subgroup property. In a locally profinite group, a closed subgroup is locally profinite, and every compact subgroup is contained in an open compact subgroup. Important examples of locally profinite groups come from algebraic number theory. Let F be a non-archimedean local field. Then both F and are locally profinite. More generally, the matrix ring and the general linear group are locally profinite. Another example of a locally profinite group is the absolute Weil group of a non-archimedean local field: this is in contrast to the fact that the absolute Galois group of such is profinite (in particular compact). Let G be a locally profinite group. Then a group homomorphism is continuous if and only if it has open kernel. Let be a complex representation of G. is said to be smooth if V is a union of where K runs over all open compact subgroups K. is said to be admissible if it is smooth and is finite-dimensional for any open compact subgroup K. We now make a blanket assumption that is at most countable for all open compact subgroups K. The dual space carries the action of G given by . In general, is not smooth. Thus, we set where is acting through and set . The smooth representation is then called the contragredient or smooth dual of . The contravariant functor from the category of smooth representations of G to itself is exact. Moreover, the following are equivalent. is admissible. is admissible. The canonical G-module map is an isomorphism. When is admissible, is irreducible if and only if is irreducible.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.