Concept

Domain of holomorphy

Related concepts (5)
Stein manifold
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after . A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry. Suppose is a complex manifold of complex dimension and let denote the ring of holomorphic functions on We call a Stein manifold if the following conditions hold: is holomorphically convex, i.
Plurisubharmonic function
In mathematics, plurisubharmonic functions (sometimes abbreviated as psh, plsh, or plush functions) form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions (which are defined on a Riemannian manifold) plurisubharmonic functions can be defined in full generality on complex analytic spaces.
Friedrich Hartogs
Friedrich Moritz "Fritz" Hartogs (20 May 1874 – 18 August 1943) was a German-Jewish mathematician, known for his work on set theory and foundational results on several complex variables. Hartogs was the son of the merchant Gustav Hartogs and his wife Elise Feist and grew up in Frankfurt am Main. He studied at the Königliche Technische Hochschule Hannover, at the Technische Hochschule Charlottenburg, at the University of Berlin, and at the Ludwig Maximilian University of Munich, graduating with a doctorate in 1903 (supervised by Alfred Pringsheim).
Function of several complex variables
The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables (and analytic space), which the Mathematics Subject Classification has as a top-level heading. As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables zi.
Analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about converges to the function in some neighborhood for every in its domain.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.