In metallurgy, non-ferrous metals are metals or alloys that do not contain iron (allotropes of iron, ferrite, and so on) in appreciable amounts.
Generally more costly than ferrous metals, non-ferrous metals are used because of desirable properties such as low weight (e.g. aluminium), higher conductivity (e.g. copper), non-magnetic properties or resistance to corrosion (e.g. zinc). Some non-ferrous materials are also used in the iron and steel industries. For example, bauxite is used as flux for blast furnaces, while others such as wolframite, pyrolusite, and chromite are used in making ferrous alloys.
Important non-ferrous metals include aluminium, copper, lead, tin, titanium, and zinc, and alloys such as brass. Precious metals such as gold, silver, and platinum and exotic or rare metals such as mercury, tungsten, beryllium, bismuth, cerium, cadmium, niobium, indium, gallium, germanium, lithium, selenium, tantalum, tellurium, vanadium, and zirconium are also non-ferrous. They are usually obtained through minerals such as sulfides, carbonates, and silicates. Non-ferrous metals are usually refined through electrolysis.
Due to their extensive use, non-ferrous scrap metals are usually recycled. The secondary materials in scrap are vital to the metallurgy industry, as the production of new metals often needs them. Some recycling facilities re-smelt and recast non-ferrous materials; the dross is collected and stored onsite while the metal fumes are filtered and collected. Non-ferrous scrap metals are sourced from industrial scrap materials, particle emissions and obsolete technology (for example, copper cables) scrap.
Non-ferrous extractive metallurgy
Non-ferrous metals were the first metals used by humans for metallurgy. Gold, silver and copper existed in their native crystalline yet metallic form. These metals, though rare, could be found in quantities sufficient to attract the attention of humans. Less susceptible to oxygen than most other metals, they can be found even in weathered outcroppings.