Electrochemical kinetics is the field of electrochemistry that studies the rate of electrochemical processes. This includes the study of how process conditions, such as concentration and electric potential, influence the rate of oxidation and reduction (redox) reactions that occur at the surface of an electrode, as well as an investigation into electrochemical reaction mechanisms. Two accompanying processes are involved in the electrochemical reaction and influence the overall reaction rate:
electron transfer at the interface between the electrode and the electrolyte
transport of the redox species from the interior of the solution to the surface of the electrode; the transport can occur by diffusion, convection and migration.
Contributors to this field include Alexander Frumkin, John Alfred Valentine Butler, Max Volmer, and Julius Tafel.
An elementary charge transfer step can be described by the Butler–Volmer model proposed by John Alfred Valentine Butler and Max Volmer. The reaction rate is given by the Butler-Volmer equation:
In this equation is the net current density, is the exchange current density, is the charge transfer coefficient, is the number of electrons transferred in the reaction, is the Faraday constant, is the molar gas constant, is the absolute temperature, is the electrode overpotential, is the thermodynamic equilibrium reduction potential and is the observed value of this potential.
The equation yields a negative current density for a reduction reaction (negative overpotential) and a positive current density for an oxidation reaction (positive overpotential). The sign of the current density has no physical meaning and is defined by an international convention.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel." It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction ".
Les étudiants intègrent les notions de potentiels électriques, de niveau de Fermi de l'électron et appliquent l'équation de Nernst. Ils comprennent la structure d'une interface électrifiée. Les généra
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
This course covers the fundamental and applied aspects of electrocatalysis related to renewable energy conversion and storage. The focus is on catalysis for hydrogen evolution, oxygen evolution, and C
Silver is one of the most studied electrode materials for the electrochemical reduction of carbon dioxide into carbon monoxide, a product with many industrial applications. There is a growing number of reports in which silver is implemented in gas diffusio ...
2024
Micro- nano-electrodes have demonstrated superior performances in measuring attenuated intracellular action potentials from electrogenic cell cultures compared to traditional multi-electrode arrays. Yet, the understanding of the critical electrode features ...
EPFL2023
, ,
A multiphysics model was developed for a photoelectrochemical (PEC) cell at the device level to simulate water splitting operating under concentrated irradiation (between 50 to 600 kW m−2). The 2D model couples charge, heat, mass, photon, and momentum tran ...