Concept

Dicalcium phosphate

Summary
Dicalcium phosphate is the calcium phosphate with the formula CaHPO4 and its dihydrate. The "di" prefix in the common name arises because the formation of the HPO42– anion involves the removal of two protons from phosphoric acid, H3PO4. It is also known as dibasic calcium phosphate or calcium monohydrogen phosphate. Dicalcium phosphate is used as a food additive, it is found in some toothpastes as a polishing agent and is a biomaterial. Dibasic calcium phosphate is produced by the neutralization of calcium hydroxide with phosphoric acid, which precipitates the dihydrate as a solid. At 60 °C the anhydrous form is precipitated: To prevent degradation that would form hydroxyapatite, sodium pyrophosphate or trimagnesium phosphate octahydrate are added when for example, dibasic calcium phosphate dihydrate is to be used as a polishing agent in toothpaste. In a continuous process CaCl2 can be treated with (NH4)2HPO4 to form the dihydrate: A slurry of the dihydrate is then heated to around 65–70 °C to form anhydrous CaHPO4 as a crystalline precipitate, typically as flat diamondoid crystals, which are suitable for further processing. Dibasic calcium phosphate dihydrate is formed in "brushite" calcium phosphate cements (CPC's), which have medical applications. An example of the overall setting reaction in the formation of "β-TCP/MCPM" (β-tricalcium phosphate/monocalcium phosphate) calcium phosphate cements is: Three forms of dicalcium phosphate are known: dihydrate, CaHPO4•2H2O ('DPCD'), the mineral brushite monohydrate, CaHPO4•H2O ('DCPM') anhydrous CaHPO4, ('DCPA'), the mineral monetite. Below pH 4.8 the dihydrate and anhydrous forms of dicalcium phosphate are the most stable (insoluble) of the calcium phosphates. The structure of the anhydrous and dihydrated forms have been determined by X-ray crystallography and the structure of the monohydrate was determined by electron crystallography. The dihydrate (shown in table above) as well as the monohydrate adopt layered structures.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.