Resource recovery is using wastes as an input material to create valuable products as new outputs. The aim is to reduce the amount of waste generated, thereby reducing the need for landfill space, and optimising the values created from waste. Resource recovery delays the need to use raw materials in the manufacturing process. Materials found in municipal solid waste, construction and demolition waste, commercial waste and industrial wastes can be used to recover resources for the manufacturing of new materials and products. Plastic, paper, aluminium, glass and metal are examples of where value can be found in waste.
Resource recovery goes further than just the management of waste. Resource recovery is part of a circular economy, in which the extraction of natural resources and generation of wastes are minimised, and in which materials and products are designed more sustainably for durability, reuse, repairability, remanufacturing and recycling. Life-cycle analysis (LCA) can be used to compare the resource recovery potential of different treatment technologies.
Resource recovery can also be an aim in the context of sanitation. Here, the term refers to approaches to recover the resources that are contained in wastewater and human excreta (urine and feces). The term "toilet resources" has come into use recently. Those resources include: nutrients (nitrogen and phosphorus), organic matter, energy and water. This concept is also referred to as ecological sanitation. Separation of waste flows can help make resource recovery simpler. Examples include keeping urine separate from feces (as in urine diversion toilets) and keeping greywater and blackwater separate.
Resource recovery can be enabled by changes in government policy and regulation, circular economy infrastructure such as improved 'binfrastructure' to promote source separation and waste collection, reuse and recycling, innovative circular business models, and valuing materials and products in terms of their economic but also their social and environmental costs and benefits.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Reuse of human excreta is the safe, beneficial use of treated human excreta after applying suitable treatment steps and risk management approaches that are customized for the intended reuse application. Beneficial uses of the treated excreta may focus on using the plant-available nutrients (mainly nitrogen, phosphorus and potassium) that are contained in the treated excreta. They may also make use of the organic matter and energy contained in the excreta.
The Waste Electrical and Electronic Equipment Directive (WEEE Directive) is a European Community Directive, numbered 2012/19/EU, concerned with waste electrical and electronic equipment (WEEE). Together with the RoHS Directive 2011/65/EU, it became European Law in February 2003. The WEEE Directive set collection, recycling and recovery targets for all types of electrical goods, with a minimum rate of per head of population per annum recovered for recycling by 2009.
Sustainable sanitation is a sanitation system designed to meet certain criteria and to work well over the long-term. Sustainable sanitation systems consider the entire "sanitation value chain", from the experience of the user, excreta and wastewater collection methods, transportation or conveyance of waste, treatment, and reuse or disposal. The Sustainable Sanitation Alliance (SuSanA) includes five features (or criteria) in its definition of "sustainable sanitation": Systems need to be economically and socially acceptable, technically and institutionally appropriate and protect the environment and natural resources.
This MSc course deals with the water, sanitation and solid waste challenges in developing countries. You will learn about the current dialogue in these topics, identify key players, know existing opti
This course on applied wastewater treatment focuses on engineering and scientific aspects to achieve high effluent water quality and to handle wastes and air emissions generated in wastewater treatmen
Together, we will continue our exploration of the theme of water by building a set of fountains that we will later attempt to integrate into a domestic project for the port of Basel. The focus will be
Explores the hydrothermal gasification treatment process for sewage sludge, discussing challenges, advantages, and potential for commercialization by 2025.
Anaerobic fermentation is a widely used technology for resource recovery from municipal sludge (e.g., primary sludge). Micro-aeration is an emerging strategy which can be incorporated into this technology. However, the effect of micro-aeration on the anaer ...
Can social, organisations and disciplinary values guide decisions when thinking about ethical challenges? With this presentation, I describe the ambivalence of decision-making when it comes to being a cause or a valuable resource for acting upon ethics cha ...
Cities are increasingly reusing industrial heritage as part of cultural and creative regeneration strategies. However, designers and decision-makers face the challenge of determining which features and elements of industrial heritage are more perceived and ...