Tharsis ('θɑːrsᵻs) is a vast volcanic plateau centered near the equator in the western hemisphere of Mars. The region is home to the largest volcanoes in the Solar System, including the three enormous shield volcanoes Arsia Mons, Pavonis Mons, and Ascraeus Mons, which are collectively known as the Tharsis Montes. The tallest volcano on the planet, Olympus Mons, is often associated with the Tharsis region but is actually located off the western edge of the plateau. The name Tharsis is the Greco-Latin transliteration of the biblical Tarshish, the land at the western extremity of the known world. Tharsis can have many meanings depending on historical and scientific context. The name is commonly used in a broad sense to represent a continent-sized region of anomalously elevated terrain centered just south of the equator around longitude 265°E. Called the Tharsis bulge or Tharsis rise, this broad, elevated region dominates the western hemisphere of Mars and is the largest topographic feature on the planet, after the global dichotomy. Tharsis has no formally defined boundaries, so precise dimensions for the region are difficult to give. In general, the bulge is about across and up to high (excluding the volcanoes, which have much higher elevations). It roughly extends from Amazonis Planitia (215°E) in the west to Chryse Planitia (300°E) in the east. The bulge is slightly elongated in the north-south direction, running from the northern flanks of Alba Mons (about 55°N) to the southern base of the Thaumasia highlands (about 43°S). Depending on how the region is defined, Tharsis covers , or up to 25% of Mars’ surface area. The greater Tharsis region consists of several geologically distinct subprovinces with different ages and volcano-tectonic histories. The subdivisions given here are informal and may rise all or parts of other formally named physiographic features and regions. Tharsis is divided into two broad rises: a northern and a larger southern rise. The northern rise partially overlies sparsely cratered, lowland plains north of the dichotomy boundary.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related concepts (7)
Mars
Mars is the fourth planet and the furthest terrestrial planet from the Sun. The reddish color of its surface is due to finely grained iron(III) oxide dust in the soil, giving it the nickname "the Red Planet". Mars's radius is second smallest among the planets in the Solar System at . The Martian dichotomy is visible on the surface: on average, the terrain on Mars's northern hemisphere is flatter and lower than its southern hemisphere. Mars has a thin atmosphere made primarily of carbon dioxide and two irregularly shaped natural satellites: Phobos and Deimos.
Olympus Mons
Olympus Mons (pronəˌlɪmpəs_ˈmɒnz,_oʊˌ-; Latin for Mount Olympus) is a large shield volcano on Mars. It is over 21.9 km (13.6 mi or 72,000 ft) high, as measured by the Mars Orbiter Laser Altimeter (MOLA), and is about two and a half times Mount Everest's height above sea level. It is one of Mars's largest volcanoes, its tallest planetary mountain, and is approximately tied with Rheasilvia as the tallest mountain currently discovered in the Solar System. It is associated with the Tharsis Montes, a large volcanic region on Mars.
Syrtis Major Planum
Syrtis Major Planum is a "dark spot" (an albedo feature) located in the boundary between the northern lowlands and southern highlands of Mars just west of the impact basin Isidis in the Syrtis Major quadrangle. It was discovered, on the basis of data from Mars Global Surveyor, to be a low-relief shield volcano, but was formerly believed to be a plain, and was then known as Syrtis Major Planitia. The dark color comes from the basaltic volcanic rock of the region and the relative lack of dust.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.