Ali H. SayedAli H. Sayed is Dean of Engineering at EPFL, Switzerland, where he also leads the Adaptive Systems Laboratory. He has also served as Distinguished Professor and Chairman of Electrical Engineering at UCLA. He is recognized as a Highly Cited Researcher and is a member of the US National Academy of Engineering. He is also a member of the World Academy of Sciences and served as President of the IEEE Signal Processing Society during 2018 and 2019.
Dr. Sayed is an author/co-author of over 570 scholarly publications and six books. His research involves several areas
including adaptation and learning theories, data and network sciences, statistical inference, and multiagent systems.
His work has been recognized with several major awards including the 2022 IEEE Fourier Award, the 2020 Norbert Wiener Society Award and the 2015 Education Award from the IEEE Signal Processing Society, the 2014 Papoulis Award from the European Association for Signal Processing, the 2013 Meritorious Service Award and the 2012 Technical Achievement Award from the IEEE Signal Processing Society, the 2005 Terman Award from the American Society for Engineering Education, the 2005 Distinguished Lecturer from the IEEE Signal Processing Society, the 2003 Kuwait Prize, and the 1996 IEEE Donald G. Fink Prize. His publications have been awarded several Best Paper Awards from the IEEE (2002, 2005, 2012, 2014) and EURASIP (2015). He is a Fellow of IEEE, EURASIP, and the American Association for the Advancement of Science (AAAS); the publisher of the journal Science.
Jean-Yves Le BoudecJean-Yves Le Boudec is full professor at EPFL and fellow of the IEEE. He graduated from Ecole Normale Superieure de Saint-Cloud, Paris, where he obtained the Agregation in Mathematics in 1980 (rank 4) and received his doctorate in 1984 from the University of Rennes, France. From 1984 to 1987 he was with INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department. In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises Network Department. In 1994 he joined EPFL as associate professor. His interests are in the performance and architecture of communication systems. In 1984, he developed analytical models of multiprocessor, multiple bus computers. In 1990 he invented the concept called "MAC emulation" which later became the ATM forum LAN emulation project, and developed the first ATM control point based on OSPF. He also launched public domain software for the interworking of ATM and TCP/IP under Linux. He proposed in 1998 the first solution to the failure propagation that arises from common infrastructures in the Internet. He contributed to network calculus, a recent set of developments that forms a foundation to many traffic control concepts in the internet. He earned the Infocom 2005 Best Paper award, with Milan Vojnovic, for elucidating the perfect simulation and stationarity of mobility models, the 2008 IEEE Communications Society William R. Bennett Prize in the Field of Communications Networking, with Bozidar Radunovic, for the analysis of max-min fairness and the 2009 ACM Sigmetrics Best Paper Award, with Augustin Chaintreau and Nikodin Ristanovic, for the mean field analysis of the age of information in gossiping protocols. He is or has been on the program committee or editorial board of many conferences and journals, including Sigcomm, Sigmetrics, Infocom, Performance Evaluation and ACM/IEEE Transactions on Networking. He co-authored the book "Network Calculus" (2001) with Patrick Thiran and is the author of the book "Performance Evaluation of Computer and Communication Systems" (2010).
Thomas MountfordD'origine britannique, né en 1961. Il a reçu la bourse présidentielle des jeunes investisseurs (Presidential Young Investigator Grant) en 1990 et le prix de la Fraternité Sloan (Sloan Fellowship) en 1991. Son travail montre que les valeurs critiques d'une classe large de de systèmes de particules proches sont égales à 1, et que, suite à plusieurs travaux sur la trajectoire du mouvement brownien, incluant une simulation numérique, le nombre d'îlots browniens en 2 dimensions tend vers l'infini quand leurs tailles tendent vers 0. Il reçoit le prix Rosenbaum en 1993 lui ouvrant ainsi les portes du Isaac Newton Institute à Cambridge. Il est également décoré par le prix Rollo Davidson en 1995 et nommé membre honoraire de l'Institute of Mathematical Statistics en 2001.
Assistant Profeseur de Mathematique a UCLA 1987- 1991
Associate Professeur de Mathematique a UCLA 1991-1993
Professeur de Mathematique a UCLA 1993-2001
Professeur Departement de mathématiques, EPFL dès 2001