Concept

Alpha shape

In computational geometry, an alpha shape, or α-shape, is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of a finite set of points. They were first defined by . The alpha-shape associated with a set of points is a generalization of the concept of the convex hull, i.e. every convex hull is an alpha-shape but not every alpha shape is a convex hull. For each real number α, define the concept of a generalized disk of radius 1/α as follows: If α = 0, it is a closed half-plane; If α > 0, it is a closed disk of radius 1/α; If α < 0, it is the closure of the complement of a disk of radius −1/α. Then an edge of the alpha-shape is drawn between two members of the finite point set whenever there exists a generalized disk of radius 1/α containing none of the point set and which has the property that the two points lie on its boundary. If α = 0, then the alpha-shape associated with the finite point set is its ordinary convex hull. Alpha shapes are closely related to alpha complexes, subcomplexes of the Delaunay triangulation of the point set. Each edge or triangle of the Delaunay triangulation may be associated with a characteristic radius, the radius of the smallest empty circle containing the edge or triangle. For each real number α, the α-complex of the given set of points is the simplicial complex formed by the set of edges and triangles whose radii are at most 1/α. The union of the edges and triangles in the α-complex forms a shape closely resembling the α-shape; however it differs in that it has polygonal edges rather than edges formed from arcs of circles. More specifically, showed that the two shapes are homotopy equivalent. (In this later work, Edelsbrunner used the name "α-shape" to refer to the union of the cells in the α-complex, and instead called the related curvilinear shape an α-body.) This technique can be employed to reconstruct a Fermi surface from the electronic Bloch spectral function evaluated at the Fermi level, as obtained from the Green's function in a generalised ab-initio study of the problem.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.