Concept

Scanning electrochemical microscopy

Summary
Scanning electrochemical microscopy (SECM) is a technique within the broader class of scanning probe microscopy (SPM) that is used to measure the local electrochemical behavior of liquid/solid, liquid/gas and liquid/liquid interfaces. Initial characterization of the technique was credited to University of Texas electrochemist, Allen J. Bard, in 1989. Since then, the theoretical underpinnings have matured to allow widespread use of the technique in chemistry, biology and materials science. Spatially resolved electrochemical signals can be acquired by measuring the current at an ultramicroelectrode (UME) tip as a function of precise tip position over a substrate region of interest. Interpretation of the SECM signal is based on the concept of diffusion-limited current. Two-dimensional raster scan information can be compiled to generate images of surface reactivity and chemical kinetics. The technique is complementary to other surface characterization methods such as surface plasmon resonance (SPR), electrochemical scanning tunneling microscopy (ESTM), and atomic force microscopy (AFM) in the interrogation of various interfacial phenomena. In addition to yielding topographic information, SECM is often used to probe the surface reactivity of solid-state materials, electrocatalyst materials, enzymes and other biophysical systems. SECM and variations of the technique have also found use in microfabrication, surface patterning, and microstructuring. The emergence of ultramicroelectrodes (UMEs) around 1980 was pivotal to the development of sensitive electroanalytical techniques like SECM. UMEs employed as probes enabled the study of quick or localized electrochemical reactions. The first SECM-like experiment was performed in 1986 by Engstrom to yield direct observation of reaction profiles and short-lived intermediates. Simultaneous experiments by Allen J. Bard using an Electrochemical Scanning Tunneling Microscope (ESTM) demonstrated current at large tip-to-sample distances that was inconsistent with electron tunneling.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.