Orion (officially Orion Multi-Purpose Crew Vehicle or Orion MPCV) is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of six beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces modeled after those used in the Boeing 787 Dreamliner. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Although compatible with other launch vehicles, Orion is primarily intended to launch atop a Space Launch System (SLS) rocket, with a tower launch escape system.
Orion was originally conceived in the early 2000s by Lockheed Martin as a proposal for the Crew Exploration Vehicle (CEV) to be used in NASA's Constellation program. Lockheed Martin's proposal defeated a competing proposal by Northrop Grumman and was selected by NASA in 2006 to be the CEV. Originally designed with a service module featuring a new "Orion Main Engine" and a pair of circular solar panels, the spacecraft was to be launched atop the Ares I rocket. Following the cancellation of the Constellation program in 2010, Orion was heavily redesigned for use in NASA's Journey to Mars initiative; later named Moon to Mars. The SLS replaced the Ares I as Orion's primary launch vehicle, and the service module was replaced with a design based on the European Space Agency's Automated Transfer Vehicle. A development version of Orion's CM was launched in 2014 during Exploration Flight Test-1, while at least four test articles have been produced. Orion was primarily designed by Lockheed Martin Space Systems in Littleton, Colorado.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Thiokol (variously Thiokol Chemical Corporation(/Company), Morton Thiokol Inc. (MTI), Cordant Technologies Inc., Thiokol Propulsion, AIC (Alcoa Industrial Components) Group, then part of Alliant Techsystems (ATK) Inc., then ATK Thiokol, ATK Launch Systems Group; finally Orbital ATK before becoming part of Northrop Grumman Innovation Systems and Northrop Grumman) was an American corporation concerned initially with rubber and related chemicals, and later with rocket and missile propulsion systems.
The Space Launch System (SLS) is an American super heavy-lift expendable launch vehicle used by NASA. As the primary launch vehicle of the Artemis Moon landing program, SLS is designed to launch the crewed Orion spacecraft on a trans-lunar trajectory. The first SLS launch was the uncrewed Artemis 1, which took place on 16 November 2022. Development of SLS began in 2011, as a replacement for the retired Space Shuttle as well as the cancelled Ares I and Ares V launch vehicles.
Artemis 1, officially Artemis I and formerly Exploration Mission-1 (EM-1), was an uncrewed Moon-orbiting mission. As the first major spaceflight of NASA's Artemis program, Artemis 1 marked the agency's return to lunar exploration after the conclusion of the Apollo program five decades earlier. It was the first integrated flight test of the Orion spacecraft and Space Launch System (SLS) rocket, and its main objective was to test the Orion spacecraft, especially its heat shield, in preparation for subsequent Artemis missions.
The main objective of the course is to learn to apply the fundamentals of space system engineering & design. The course introduces the various phases, systems, & subsystems involved in the design of s
The objective of the course is to present with different viewpoints, the lessons learned which lead to the decisions in the space exploration and their consequences today and for the decades to come.
The main objective of this course is to teach the students the fundamentals of concurrent engineering for space missions and systems. The course is built around a similar framework to that of the Euro
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Explores the lessons learned from space exploration, including significant incidents in human spaceflights and the search for resources in the solar system.
With growing awareness of the vulnerability of the near-Earth space region and the anticipated surge in satellite objects, efforts are underway to assess and implement various mitigation strategies. These aim to minimize the impact of space activities and ...
EPFL2024
, , ,
From the recent awareness of the booming number of space debris and their derived worldwide re-entry event threat originating from the use of high survivability components, complementary mitigation measures must be taken for future orbital elements. In thi ...
2023
, , ,
Gaia is a cornerstone mission in the science programme of the European Space Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the ...