Binucleated cells are cells that contain two nuclei. This type of cell is most commonly found in cancer cells and may arise from a variety of causes. Binucleation can be easily visualized through staining and microscopy. In general, binucleation has negative effects on cell viability and subsequent mitosis. They also occur physiologically in hepatocytes, chondrocytes and in fungi (dikaryon). Cleavage furrow regression: Cells divide and almost complete division but then the cleavage furrow begins to regress and the cells merge. This is thought to be caused by nondisjunction in chromosomes but the mechanism by which it occurs is not well understood. Failed cytokinesis: The cell can fail to form a cleavage furrow, leading to both nuclei remaining in one cell. Multipolar spindles: Cells contain three or more centrioles, resulting in multiple poles. This leads to the cells pulling chromosomes in many directions that end in multiple nuclei found in one cell. Merging of newly formed cells: Two cells that have just finished cytokinesis merge into one another. This process is not entirely understood. Binucleated cells can be observed using microscopy. Cells must first be fixed to arrest them wherever they are in the cell cycle and to keep their structures from degrading. Their nuclei and tubulin must next be made visible so that binucleation can be identified. DAPI is a dye that binds to DNA and fluoresces blue. For this reason, it is particularly useful at labeling nuclei. Antibody probes can be used to label tubulin fluorescently. The immunofluorescence may then be observed with microscopy. Binucleated cells are most easily identified by viewing tubulin, which surrounds the two nuclei in the cell. Binucleated cells may be mistaken for two cells in close proximity when viewing only nuclei. Binucleation occurs at a much higher rate in cancer cells. Other identifying features of cancer cells include multipolar spindles, micronuclei, and chromatin bridge. However, the increased rate of binucleation is usually not high enough to make it a conclusive diagnostic tool.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (35)

Extensive programmed centriole elimination unveiled in C. elegans embryos

Pierre Gönczy, Nils Kalbfuss

Centrioles are critical for fundamental cellular processes, including signaling, motility, and division. The extent to which centrioles are present after cell cycle exit in a developing organism is not known. The stereotypical lineage of Caenorhabditis ele ...
AMER ASSOC ADVANCEMENT SCIENCE2023

Dissecting centriole fate in C. elegans development

Nils Kalbfuss

The presence of centrioles is critical for fundamental cell and developmental processes, including polarity, migration and division. Although centrioles are present in most proliferating cells, they are thought to vanish after cell cycle exit in some diffe ...
EPFL2022

Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast

Emrah Bostan, Pascal Damian Odermatt

Intracellular density impacts the physical nature of the cytoplasm and can globally affect cellular processes, yet density regulation remains poorly understood. Here, using a new quantitative phase imaging method, we determined that dry-mass density in fis ...
ELIFE SCIENCES PUBLICATIONS LTD2021
Show more
Related people (2)
Related concepts (1)
Multinucleate
Multinucleate cells (also known as multinucleated or polynuclear cells) are eukaryotic cells that have more than one nucleus per cell, i.e., multiple nuclei share one common cytoplasm. Mitosis in multinucleate cells can occur either in a coordinated, synchronous manner where all nuclei divide simultaneously or asynchronously where individual nuclei divide independently in time and space. Certain organisms may have a multinuclear stage of their life cycle. For example, slime molds have a vegetative, multinucleate life stage called a plasmodium.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.