Summary
The fluctuation theorem (FT), which originated from statistical mechanics, deals with the relative probability that the entropy of a system which is currently away from thermodynamic equilibrium (i.e., maximum entropy) will increase or decrease over a given amount of time. While the second law of thermodynamics predicts that the entropy of an isolated system should tend to increase until it reaches equilibrium, it became apparent after the discovery of statistical mechanics that the second law is only a statistical one, suggesting that there should always be some nonzero probability that the entropy of an isolated system might spontaneously decrease; the fluctuation theorem precisely quantifies this probability. Roughly, the fluctuation theorem relates to the probability distribution of the time-averaged irreversible entropy production, denoted . The theorem states that, in systems away from equilibrium over a finite time t, the ratio between the probability that takes on a value A and the probability that it takes the opposite value, −A, will be exponential in At. In other words, for a finite non-equilibrium system in a finite time, the FT gives a precise mathematical expression for the probability that entropy will flow in a direction opposite to that dictated by the second law of thermodynamics. Mathematically, the FT is expressed as: This means that as the time or system size increases (since is extensive), the probability of observing an entropy production opposite to that dictated by the second law of thermodynamics decreases exponentially. The FT is one of the few expressions in non-equilibrium statistical mechanics that is valid far from equilibrium. Note that the FT does not state that the second law of thermodynamics is wrong or invalid. The second law of thermodynamics is a statement about macroscopic systems. The FT is more general. It can be applied to both microscopic and macroscopic systems. When applied to macroscopic systems, the FT is equivalent to the Second Law of Thermodynamics.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (77)