Related concepts (26)
Cofinality
In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A. This definition of cofinality relies on the axiom of choice, as it uses the fact that every non-empty set of cardinal numbers has a least member. The cofinality of a partially ordered set A can alternatively be defined as the least ordinal x such that there is a function from x to A with cofinal . This second definition makes sense without the axiom of choice.
Axiom of dependent choice
In mathematics, the axiom of dependent choice, denoted by , is a weak form of the axiom of choice () that is still sufficient to develop most of real analysis. It was introduced by Paul Bernays in a 1942 article that explores which set-theoretic axioms are needed to develop analysis. A homogeneous relation on is called a total relation if for every there exists some such that is true. The axiom of dependent choice can be stated as follows: For every nonempty set and every total relation on there exists a sequence in such that for all In fact, x0 may be taken to be any desired element of X.
Order isomorphism
In the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections.
Well-ordering theorem
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also ). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem.
Hartogs number
In mathematics, specifically in axiomatic set theory, a Hartogs number is an ordinal number associated with a set. In particular, if X is any set, then the Hartogs number of X is the least ordinal α such that there is no injection from α into X. If X can be well-ordered then the cardinal number of α is a minimal cardinal greater than that of X. If X cannot be well-ordered then there cannot be an injection from X to α. However, the cardinal number of α is still a minimal cardinal not less than or equal to the cardinality of X.
Axiom of constructibility
The axiom of constructibility is a possible axiom for set theory in mathematics that asserts that every set is constructible. The axiom is usually written as V = L, where V and L denote the von Neumann universe and the constructible universe, respectively. The axiom, first investigated by Kurt Gödel, is inconsistent with the proposition that zero sharp exists and stronger large cardinal axioms (see list of large cardinal properties). Generalizations of this axiom are explored in inner model theory.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.