Concept

Sparse distributed memory

Sparse distributed memory (SDM) is a mathematical model of human long-term memory introduced by Pentti Kanerva in 1988 while he was at NASA Ames Research Center. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines – e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, etc. Sparse distributed memory is used for storing and retrieving large amounts ( bits) of information without focusing on the accuracy but on similarity of information. There are some recent applications in robot navigation and experience-based robot manipulation. It is a generalized random-access memory (RAM) for long (e.g., 1,000 bit) binary words. These words serve as both addresses to and data for the memory. The main attribute of the memory is sensitivity to similarity. This means that a word can be read back not only by giving the original write address but also by giving one close to it, as measured by the number of mismatched bits (i.e., the Hamming distance between memory addresses). SDM implements transformation from logical space to physical space using distributed data representation and storage, similarly to encoding processes in human memory. A value corresponding to a logical address is stored into many physical addresses. This way of storing is robust and not deterministic. A memory cell is not addressed directly. If input data (logical addresses) are partially damaged at all, we can still get correct output data. The theory of the memory is mathematically complete and has been verified by computer simulation. It arose from the observation that the distances between points of a high-dimensional space resemble the proximity relations between concepts in human memory. The theory is also practical in that memories based on it can be implemented with conventional random-access memory elements. Human memory has a tendency to congregate memories based on similarities between them (although they may not be related), such as "firetrucks are red and apples are red".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.