Concept

Test cross

Summary
Under the law of dominance in genetics, an individual expressing a dominant phenotype could contain either two copies of the dominant allele (homozygous dominant) or one copy of each dominant and recessive allele (heterozygous dominant). By performing a test cross, one can determine whether the individual is heterozygous or homozygous dominant. In a test cross, the individual in question is bred with another individual that is homozygous for the recessive trait and the offspring of the test cross are examined. Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant allele. If all of the offspring produced express the dominant trait, the individual in question is homozygous for the dominant allele. The first uses of test crosses were in Gregor Mendel’s experiments in plant hybridization. While studying the inheritance of dominant and recessive traits in pea plants, he explains that the “signification” (now termed zygosity) of an individual for a dominant trait is determined by the expression patterns of the following generation. Rediscovery of Mendel’s work in the early 1900s led to an explosion of experiments employing the principles of test crosses. From 1908-1911, Thomas Hunt Morgan conducted test crosses while determining the inheritance pattern of a white eye-colour mutation in Drosophila. These test cross experiments became hallmarks in the discovery of sex-linked traits. Test crosses have a variety of applications. Common animal organisms, called model organisms, where test crosses are often used include Caenorhabditis elegans and Drosophila melanogaster. Basic procedures for performing test crosses in these organisms are provided below: To perform a test cross with C. elegans, place worms with a known recessive genotype with worms of an unknown genotype on an agar plate.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.