A video display controller or VDC (also called a display engine or display interface) is an integrated circuit which is the main component in a video-signal generator, a device responsible for the production of a TV video signal in a computing or game system. Some VDCs also generate an audio signal, but that is not their main function.
VDCs were used in the home computers of the 1980s and also in some early video picture systems.
The VDC is the main component of the video signal generator logic, responsible for generating the timing of video signals such as the horizontal and vertical synchronization signals and the blanking interval signal. Sometimes other supporting chips were necessary to build a complete system, such as RAM to hold pixel data, ROM to hold character fonts, or some discrete logic such as shift registers.
Most often the VDC chip is completely integrated in the logic of the main computer system, (its video RAM appears in the memory map of the main CPU), but sometimes it functions as a coprocessor that can manipulate the video RAM contents independently.
The difference between a display controller, a graphics accelerator, and a video compression/decompression IC is huge, but, since all of this logic is usually found on the chip of a graphics processing unit and is usually not available separately to the end-customer, there is often much confusion about these very different functional blocks.
GPUs with hardware acceleration started appearing during the 1990s. VDCs often had special hardware for the creation of "sprites", a function that in more modern VDP chips is done with the "Bit Blitter" using the "Bit blit" function.
One example of a typical video display processor is the "VDP2 32-bit background and scroll plane video display processor" of the Sega Saturn.
Another example is the Lisa (AGA) chip that was used for the improved graphics of the later generation Amiga computers.
That said, it is not completely clear when a "video chip" is a "video display controller" and when it is a "video display processor".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Home computers were a class of microcomputers that entered the market in 1977 and became common during the 1980s. They were marketed to consumers as affordable and accessible computers that, for the first time, were intended for the use of a single nontechnical user. These computers were a distinct market segment that typically cost much less than business, scientific or engineering-oriented computers of the time such as those running CP/M or the IBM PC, and were generally less powerful in terms of memory and expandability.
In computer graphics, a sprite is a two-dimensional bitmap that is integrated into a larger scene, most often in a 2D video game. Originally, the term sprite referred to fixed-sized objects composited together, by hardware, with a background. Use of the term has since become more general. Systems with hardware sprites include arcade video games of the 1970s and 1980s; game consoles including as the Atari VCS (1977), ColecoVision (1982), Nintendo Entertainment System (1983), and Sega Genesis (1988); and home computers such as the TI-99/4 (1979), Atari 8-bit family (1979), Commodore 64 (1982), MSX (1983), Amiga (1985), and X68000 (1987).
The Nintendo Entertainment System (NES) is an 8-bit third-generation home video game console produced by Nintendo. It was first released in Japan in 1983 as the Family Computer (FC), commonly referred to as Famicom. It was redesigned to become the NES, which was released in American test markets on October 18, 1985, and was soon fully launched in North America and other countries. After developing several successful arcade games in the early 1980s such as Donkey Kong (1981), Nintendo planned to create a home video game console.
This course covers fundamentals of heat transfer and applications to practical problems. Emphasis will be on developing a physical and analytical understanding of conductive, convective, and radiative
In this course we study heat transfer (and energy conversion) from a microscopic perspective. First we focus on understanding why classical laws (i.e. Fourier Law) are what they are and what are their
Le TP de physiologie introduit les approches expérimentales du domaine biomédical, avec les montages de mesure, les capteurs, le conditionnement des signaux, l'acquisition et traitement de données.
Le
Two-dimensional (2D) transition metal dichalcogenides (TMDs) possess remarkable optoelectronic properties which are unique and tunable based on composition and thickness. These materials are posed to revolutionize ultrathin devices across many fields inclu ...
Embedded memories occupy an increasingly dominant part of the area and power budgets of modern systems-on-chips (SoCs). Multi-ported embedded memories, commonly used by media SoCs and graphical processing units, occupy even more area and consume higher pow ...
Modern information technologies and human-centric communication systems employ advanced content representations for richer portrayals of the real world. The newly adopted imaging modalities offer additional information cues and permit the depiction of real ...