Dermatoscopy also known as dermoscopy or epiluminescence microscopy, is the examination of skin lesions with a dermatoscope. It is a tool similar to a camera to allow for inspection of skin lesions unobstructed by skin surface reflections. The dermatoscope consists of a magnifier, a light source (polarized or non-polarised), a transparent plate and sometimes a liquid medium between the instrument and the skin. The dermatoscope is often handheld, although there are stationary cameras allowing the capture of whole body images in a single shot. When the images or video clips are digitally captured or processed, the instrument can be referred to as a digital epiluminescence dermatoscope. The image is then analyzed automatically and given a score indicating how dangerous it is. This technique is useful to dermatologists and skin cancer practitioners in distinguishing benign from malignant (cancerous) lesions, especially in the diagnosis of melanoma. There are two main types of dermatoscopes, hand held portable and stationary mounted type. A hand held dermatoscope is composed of a transilluminating light source and a magnifying optic (usually a 10-fold magnification). There are three main modes of dermatoscopy: Nonpolarized light, contact Polarized light, contact Polarized light, noncontact Polarized light allows for visualization of deeper skin structures, while non-polarized light provide information about the superficial skin. Most modern dermatoscopes allow the user to toggle between the two modes, which provide complementary information. Others may also allow the user to have different zoom levels and color overlay. A stationary type allows a full body image to be captured in one snap. It is then transferred into image analysis algorithms that generates a three dimensional model of the person. Lesions on the person are marked and analyzed using Artificial intelligence. With doctors who are experts in dermatoscopy, the diagnostic accuracy for melanoma is significantly better than those who do not have any specialized training.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (4)

STAT3 promotes melanoma metastasis by CEBP-induced repression of the MITF pathway

Friedrich Beermann

Metastatic melanoma is hallmarked by its ability of phenotype switching to more slowly proliferating, but highly invasive cells. Here, we tested the impact of signal transducer and activator of transcription 3 (STAT3) on melanoma progression in association ...
SPRINGERNATURE2020

Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background

Manon Frutschi, Friedrich Beermann

In human cutaneous malignant melanoma, a predominance of activated mutations in the N-ras gene has been documented. To obtain a mouse model most closely mimicking the human disease, a transgenic mouse line was generated by targeting expression of dominant- ...
2005

Improving Face Verification using Skin Color Information

Sébastien Marcel, Samy Bengio

The performance of face verification systems has steadily improved over the last few years, mainly focusing on models rather than on feature processing. State-of-the-art methods often use the gray-scale face image as input. In this paper, we propose to use ...
IDIAP2001
Show more
Related concepts (1)
Skin cancer
Skin cancers are cancers that arise from the skin. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of skin cancers: basal-cell skin cancer (BCC), squamous-cell skin cancer (SCC) and melanoma. The first two, along with a number of less common skin cancers, are known as nonmelanoma skin cancer (NMSC). Basal-cell cancer grows slowly and can damage the tissue around it but is unlikely to spread to distant areas or result in death.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.