Summary
The principle of microscopic reversibility in physics and chemistry is twofold: First, it states that the microscopic detailed dynamics of particles and fields is time-reversible because the microscopic equations of motion are symmetric with respect to inversion in time (T-symmetry); Second, it relates to the statistical description of the kinetics of macroscopic or mesoscopic systems as an ensemble of elementary processes: collisions, elementary transitions or reactions. For these processes, the consequence of the microscopic T-symmetry is: Corresponding to every individual process there is a reverse process, and in a state of equilibrium the average rate of every process is equal to the average rate of its reverse process. The idea of microscopic reversibility was born together with physical kinetics. In 1872, Ludwig Boltzmann represented kinetics of gases as statistical ensemble of elementary collisions. Equations of mechanics are reversible in time, hence, the reverse collisions obey the same laws. This reversibility of collisions is the first example of microreversibility. According to Boltzmann, this microreversibility implies the principle of detailed balance for collisions: at the equilibrium ensemble each collision is equilibrated by its reverse collision. These ideas of Boltzmann were analyzed in detail and generalized by Richard C. Tolman. In chemistry, J. H. van't Hoff (1884) came up with the idea that equilibrium has dynamical nature and is a result of the balance between the forward and backward reaction rates. He did not study reaction mechanisms with many elementary reactions and could not formulate the principle of detailed balance for complex reactions. In 1901, Rudolf Wegscheider introduced the principle of detailed balance for complex chemical reactions. He found that for a complex reaction the principle of detailed balance implies important and non-trivial relations between reaction rate constants for different reactions.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.