LogicLogic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Negation as failureNegation as failure (NAF, for short) is a non-monotonic inference rule in logic programming, used to derive (i.e. that is assumed not to hold) from failure to derive . Note that can be different from the statement of the logical negation of , depending on the completeness of the inference algorithm and thus also on the formal logic system. Negation as failure has been an important feature of logic programming since the earliest days of both Planner and Prolog. In Prolog, it is usually implemented using Prolog's extralogical constructs.
Answer set programmingAnswer set programming (ASP) is a form of declarative programming oriented towards difficult (primarily NP-hard) search problems. It is based on the stable model (answer set) semantics of logic programming. In ASP, search problems are reduced to computing stable models, and answer set solvers—programs for generating stable models—are used to perform search. The computational process employed in the design of many answer set solvers is an enhancement of the DPLL algorithm and, in principle, it always terminates (unlike Prolog query evaluation, which may lead to an infinite loop).
Belief revisionBelief revision is the process of changing beliefs to take into account a new piece of information. The logical formalization of belief revision is researched in philosophy, in databases, and in artificial intelligence for the design of rational agents. What makes belief revision non-trivial is that several different ways for performing this operation may be possible. For example, if the current knowledge includes the three facts " is true", " is true" and "if and are true then is true", the introduction of the new information " is false" can be done preserving consistency only by removing at least one of the three facts.
Autoepistemic logicThe autoepistemic logic is a formal logic for the representation and reasoning of knowledge about knowledge. While propositional logic can only express facts, autoepistemic logic can express knowledge and lack of knowledge about facts. The stable model semantics, which is used to give a semantics to logic programming with negation as failure, can be seen as a simplified form of autoepistemic logic. The syntax of autoepistemic logic extends that of propositional logic by a modal operator indicating knowledge: if is a formula, indicates that is known.
Stable model semanticsThe concept of a stable model, or answer set, is used to define a declarative semantics for logic programs with negation as failure. This is one of several standard approaches to the meaning of negation in logic programming, along with program completion and the well-founded semantics. The stable model semantics is the basis of answer set programming.
Probabilistic logicProbabilistic logic (also probability logic and probabilistic reasoning) involves the use of probability and logic to deal with uncertain situations. Probabilistic logic extends traditional logic truth tables with probabilistic expressions. A difficulty of probabilistic logics is their tendency to multiply the computational complexities of their probabilistic and logical components. Other difficulties include the possibility of counter-intuitive results, such as in case of belief fusion in Dempster–Shafer theory.
Closed-world assumptionThe closed-world assumption (CWA), in a formal system of logic used for knowledge representation, is the presumption that a statement that is true is also known to be true. Therefore, conversely, what is not currently known to be true, is false. The same name also refers to a logical formalization of this assumption by Raymond Reiter. The opposite of the closed-world assumption is the open-world assumption (OWA), stating that lack of knowledge does not imply falsity. Decisions on CWA vs.
Logical consequenceLogical consequence (also entailment) is a fundamental concept in logic which describes the relationship between statements that hold true when one statement logically follows from one or more statements. A valid logical argument is one in which the conclusion is entailed by the premises, because the conclusion is the consequence of the premises.
ArgumentAn argument is a series of sentences, statements or propositions some of which are called premises and one is the conclusion. The purpose of an argument is to give reasons for one's conclusion via justification, explanation, and/or persuasion. Arguments are intended to determine or show the degree of truth or acceptability of another statement called a conclusion. Arguments can be studied from three main perspectives: the logical, the dialectical and the rhetorical perspective.