XFree86 is an implementation of the X Window System. It was originally written for Unix-like operating systems on IBM PC compatibles and was available for many other operating systems and platforms. It is free and open source software under the XFree86 License version 1.1. It was developed by the XFree86 Project, Inc. The lead developer was David Dawes. The last released version was 4.8.0, released December 2008. The last XFree86 CVS commit was made on May 18, 2009; the project was confirmed dormant in December 2011.
For most of the 1990s and early 2000s, the project was the source of most innovation in X and was the de facto steward of X development. Until early 2004, it was almost universal on Linux and the BSDs.
In February 2004, with version 4.4.0, The XFree86 Project began distributing new code with a copyright license that the Free Software Foundation considered GPL incompatible. Most open source operating systems using XFree86 found this unacceptable and moved to a fork from before the license change. The first fork was the abortive Xouvert, but X.Org Server soon became dominant. Most XFree86 developers also moved to X.Org.
While XFree86 was widely used by most Unix-like computer operating systems before its license change with version 4.4.0, it has since then been superseded by X.org and is used rarely nowadays. The last remaining operating system distribution to use it was NetBSD, which shipped some platforms with 4.5.0 by default until removing it as obsolete in 2015. and later releases use X.org by default on various ports (including i386 and amd64), and X.org is available through NetBSD pkgsrc for architectures for which XFree86 remains the default because of better support.
the netbsd-7 branch and release were the last to potentially contain XFree86, and XFree86 was completely removed before netbsd-8 branch and release in 2018.
The XFree86 server communicates with the host operating system's kernel to drive input and output devices, with the exception of graphics cards.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
OpenBSD is a security-focused, free and open-source, Unix-like operating system based on the Berkeley Software Distribution (BSD). Theo de Raadt created OpenBSD in 1995 by forking NetBSD 1.0. According to the website, the OpenBSD project emphasizes "portability, standardization, correctness, proactive security and integrated cryptography." The OpenBSD project maintains portable versions of many subsystems as packages for other operating systems.
X.Org Server is the free and open-source implementation of the X Window System display server stewarded by the X.Org Foundation. Implementations of the client-side X Window System protocol exist in the form of X11 libraries, which serve as helpful APIs for communicating with the X server. Two such major X libraries exist for X11. The first of these libraries was Xlib, the original C language X11 API, but another C language X library, XCB, was created later in 2001.
The Direct Rendering Infrastructure (DRI) is the framework comprising the modern Linux graphics stack which allows unprivileged user-space programs to issue commands to graphics hardware without conflicting with other programs. The main use of DRI is to provide hardware acceleration for the Mesa implementation of OpenGL. DRI has also been adapted to provide OpenGL acceleration on a framebuffer console without a display server running.
We examine the connection of two graph parameters, the size of a minimum feedback arcs set and the acyclic disconnection. A feedback arc set of a directed graph is a subset of arcs such that after deletion the graph becomes acyclic. The acyclic disconnecti ...
We consider on the torus the scaling limit of stochastic 2D (inviscid) fluid dynamics equations with transport noise to deterministic viscous equations. Quantitative estimates on the convergence rates are provided by combining analytic and probabilistic ar ...
A space-time adaptive algorithm is presented to solve the incompressible Navier-Stokes equations. Time discretization is performed with the BDF2 method while continuous, piecewise linear anisotropic finite elements are used for the space discretization. Th ...