The North Atlantic Oscillation (NAO) is a weather phenomenon over the North Atlantic Ocean of fluctuations in the difference of atmospheric pressure at sea level (SLP) between the Icelandic Low and the Azores High. Through fluctuations in the strength of the Icelandic Low and the Azores High, it controls the strength and direction of westerly winds and location of storm tracks across the North Atlantic.
The NAO was discovered through several studies in the late 19th and early 20th centuries. Unlike the El Niño–Southern Oscillation phenomenon in the Pacific Ocean, the NAO is a largely atmospheric mode. It is one of the most important manifestations of climate fluctuations in the North Atlantic and surrounding humid climates.
The North Atlantic Oscillation is closely related to the Arctic oscillation (AO) (or Northern Annular Mode (NAM)), but should not be confused with the Atlantic multidecadal oscillation (AMO).
The NAO has multiple possible definitions. The easiest to understand are those based on measuring the seasonal average air pressure difference between stations, such as:
Lisbon and Stykkishólmur/Reykjavík
Ponta Delgada, Azores and Stykkishólmur/Reykjavík
Azores (1865–2002), Gibraltar (1821–2007), and Reykjavík
These definitions all have in common the same northern point (because this is the only station in the region with a long record) in Iceland; and various southern points. All are attempting to capture the same pattern of variation, by choosing stations in the "eye" of the two stable pressure areas, the Azores High and the Icelandic Low (shown in the graphic).
A more complex definition, only possible with more complete modern records generated by numerical weather prediction, is based on the principal empirical orthogonal function (EOF) of surface pressure. This definition has a high degree of correlation with the station-based definition. This then leads onto a debate as to whether the NAO is distinct from the AO/NAM, and if not, which of the two is to be considered the most physically based expression of atmospheric structure (as opposed to the one that most clearly falls out of mathematical expression).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A tropical cyclone is a rapidly rotating storm system characterized by a low-pressure center, a closed low-level atmospheric circulation, strong winds, and a spiral arrangement of thunderstorms that produce heavy rain and squalls. Depending on its location and strength, a tropical cyclone is referred to by different names, including hurricane (ˈhʌrᵻkən,_-keɪn), typhoon (taɪ'fuːn), tropical storm, cyclonic storm, tropical depression, or simply cyclone.
The Gulf Stream, together with its northern extension the North Atlantic Drift, is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States, then veers east near 36°N latitude (North Carolina) and moves toward Northwest Europe as the North Atlantic Current. The process of western intensification causes the Gulf Stream to be a northward-accelerating current off the east coast of North America.
An Atlantic hurricane is a tropical cyclone that forms in the Atlantic Ocean, primarily between the months of June and November. A hurricane differs from a cyclone or typhoon only on the basis of location. A hurricane is a storm that occurs in the Atlantic Ocean and northeastern Pacific Ocean, a typhoon occurs in the northwestern Pacific Ocean, and a cyclone occurs in the South Pacific Ocean or Indian Ocean. Tropical cyclones can be categorized by intensity.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
Environmental extreme events can have devastating impacts on society when they interact with vulnerable human and natural systems. Such events can result from natural causes, like phenomena related to the El Ni~no-Southern Oscillation or decadal/multi-dec ...
EPFL2022
, , , , ,
The Arctic region is experiencing considerable changes and is warming at a rate three to four times as fast as the rest of the world. Aerosols, which can be from natural or anthropogenic sources, locally emitted or long-range transported, play a crucial ro ...
2023
, ,
Atmospheric gaseous elemental mercury (GEM) concentrations in the Arctic exhibit a clear summertime maximum, while the origin of this peak is still a matter of debate in the community. Based on summertime observations during the Multidisciplinary drifting ...