Evolution of mammalian auditory ossicles
In the auditory system, the columella contributes to hearing in amphibians, reptiles and birds. The columella form thin, bony structures in the interior of the skull and serve the purpose of transmitting sounds from the eardrum. It is an evolutionary homolog of the stapes, one of the auditory ossicles in mammals.
In many species, the extracolumella is a cartilaginous structure that grows in association with the columella. During development, the columella is derived from the dorsal end of the hyoid arch.
The evolution of the columella is closely related to the evolution of the jaw joint. It is an ancestral homolog of the stapes, and is derived from the hyomandibular bone of fishes.
As the columella is derived from the hyomandibula, many of its functional relationships remain the same. The columella resides in the air-filled tympanic cavity of the middle ear. The footplate, or proximal end of the columella, rests in the oval window. Sound is conducted through the oval window to the interior of the otic capsule. This motion ultimately stimulates sensory cells in the inner ear.
In the transition of tetrapods from sea to land, the earliest appearance of functional columella appeared in temnospondyls.
Crocodilians evolved to lift the head and body off the ground, isolating the head from ground vibrations. Under selective pressure to detect airborne sound vibrations, the columella in crocodilians have become more slender and reduce their mass. The extracolumella, a cartilaginous outgrowth on the distal end of the columella, couples the columella to the tympanum to conduct sound from the exterior air.
Birds and modern crocodilians have evolved a trifurcated columella, which forms a Y-shaped support structure on the surface of the tympanic membrane. In birds, this is thought to increase the surface area of the columellar footplate, thus lowering the threshold of hearing and improving the detection of airborne sound waves.
In frogs, the extracolumella is simple and club-shaped.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The evolution of mammalian auditory ossicles was an evolutionary process that resulted in the formation of the bones of the mammalian middle ear. These bones, or ossicles, are a defining characteristic of all mammals. The event is well-documented and important as a demonstration of transitional forms and exaptation, the re-purposing of existing structures during evolution. The ossicles evolved from skull bones present in most tetrapods, including the reptilian lineage.
The middle ear is the portion of the ear medial to the eardrum, and distal to the oval window of the cochlea (of the inner ear). The mammalian middle ear contains three ossicles, which transfer the vibrations of the eardrum into waves in the fluid and membranes of the inner ear. The hollow space of the middle ear is also known as the tympanic cavity and is surrounded by the tympanic part of the temporal bone.
In the anatomy of humans and various other tetrapods, the eardrum, also called the tympanic membrane or myringa, is a thin, cone-shaped membrane that separates the external ear from the middle ear. Its function is to transmit sound from the air to the ossicles inside the middle ear, and then to the oval window in the fluid-filled cochlea. Hence, it ultimately converts and amplifies vibration in the air to vibration in cochlear fluid. The malleus bone bridges the gap between the eardrum and the other ossicles.
Hearing Loss (HL) is the most prevalent sensorineural disorder, affecting 360 million people worldwide. As genetic causes lead to 50% of pre-lingual deafness, gene therapy is considered as a potential therapeutic strategy. Mutations in the TMC1 gene are li ...
The most general and striking evidence related with brain injury is that of the restoration of function. Recovery of motor and somatosensory functions has shown to commonly occur after stroke, but not all individuals show improvement. Clinical studies have ...