In algebraic geometry, a smooth scheme over a field is a scheme which is well approximated by affine space near any point. Smoothness is one way of making precise the notion of a scheme with no singular points. A special case is the notion of a smooth variety over a field. Smooth schemes play the role in algebraic geometry of manifolds in topology.
First, let X be an affine scheme of finite type over a field k. Equivalently, X has a closed immersion into affine space An over k for some natural number n. Then X is the closed subscheme defined by some equations g1 = 0, ..., gr = 0, where each gi is in the polynomial ring k[x1,..., xn]. The affine scheme X is smooth of dimension m over k if X has dimension at least m in a neighborhood of each point, and the matrix of derivatives (∂gi/∂xj) has rank at least n−m everywhere on X. (It follows that X has dimension equal to m in a neighborhood of each point.) Smoothness is independent of the choice of immersion of X into affine space.
The condition on the matrix of derivatives is understood to mean that the closed subset of X where all (n−m) × (n − m) minors of the matrix of derivatives are zero is the empty set. Equivalently, the ideal in the polynomial ring generated by all gi and all those minors is the whole polynomial ring.
In geometric terms, the matrix of derivatives (∂gi/∂xj) at a point p in X gives a linear map Fn → Fr, where F is the residue field of p. The kernel of this map is called the Zariski tangent space of X at p. Smoothness of X means that the dimension of the Zariski tangent space is equal to the dimension of X near each point; at a singular point, the Zariski tangent space would be bigger.
More generally, a scheme X over a field k is smooth over k if each point of X has an open neighborhood which is a smooth affine scheme of some dimension over k. In particular, a smooth scheme over k is locally of finite type.
There is a more general notion of a smooth morphism of schemes, which is roughly a morphism with smooth fibers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, a closed immersion of schemes is a morphism of schemes that identifies Z as a closed subset of X such that locally, regular functions on Z can be extended to X. The latter condition can be formalized by saying that is surjective. An example is the inclusion map induced by the canonical map . The following are equivalent: is a closed immersion. For every open affine , there exists an ideal such that as schemes over U. There exists an open affine covering and for each j there exists an ideal such that as schemes over .
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
This course teaches an overview of modern optimization methods, for applications in machine learning and data science. In particular, scalability of algorithms to large datasets will be discussed in t
We discuss criteria for a stable map of genus two and degree 4 to the projective plane to be smoothable, as an application of our modular desingularisation of (M) over bar (2,n)(P-r, d)(main) via logarithmic geometry and Gorenstein singularities. ...
WALTER DE GRUYTER GMBH2022
Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.
Explores smooth maps, differentials, composition properties, linearity, and extensions on manifolds.
Explores integration theory over real numbers and Berkovich spaces, revealing intriguing asymmetries and unsolved conjectures.
For compact, isometrically embedded Riemannian manifolds N -> R-L, we introduce a fourth-order version of the wave maps equation. By energy estimates, we prove an a priori estimate for smooth local solutions in the energy subcritical dimension n = 1, 2. Th ...
We study the energy-critical nonlinear Schrodinger equation with randomised initial data in dimensions d > 6. We prove that the Cauchy problem is almost surely globally well-posed with scattering for randomised supercritical initial data in H-s(Rd) wheneve ...