In algebraic geometry, an Endrass surface is a nodal surface of degree 8 with 168 real nodes, found by . , it remained the record-holder for the most number of real nodes for its degree; however, the best proven upper bound, 174, does not match the lower bound given by this surface.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In algebraic geometry, a Togliatti surface is a nodal surface of degree five with 31 nodes. The first examples were constructed by . proved that 31 is the maximum possible number of nodes for a surface of this degree, showing this example to be optimal.
This is a list of named algebraic surfaces, compact complex surfaces, and families thereof, sorted according to their Kodaira dimension following Enriques–Kodaira classification. Projective plane Cone (geometry) Cylinder Ellipsoid Hyperboloid Paraboloid Sphere Spheroid Cayley nodal cubic surface, a certain cubic surface with 4 nodes Cayley's ruled cubic surface Clebsch surface or Klein icosahedral surface Fermat cubic Monkey saddle Parabolic conoid Plücker's conoid Whitney umbrella Châtelet surfaces Dupin