Related concepts (16)
Twofish
In cryptography, Twofish is a symmetric key block cipher with a block size of 128 bits and key sizes up to 256 bits. It was one of the five finalists of the Advanced Encryption Standard contest, but it was not selected for standardization. Twofish is related to the earlier block cipher Blowfish. Twofish's distinctive features are the use of pre-computed key-dependent S-boxes, and a relatively complex key schedule. One half of an n-bit key is used as the actual encryption key and the other half of the n-bit key is used to modify the encryption algorithm (key-dependent S-boxes).
Block size (cryptography)
In modern cryptography, symmetric key ciphers are generally divided into stream ciphers and block ciphers. Block ciphers operate on a fixed length string of bits. The length of this bit string is the block size. Both the input (plaintext) and output (ciphertext) are the same length; the output cannot be shorter than the input - this follows logically from the pigeonhole principle and the fact that the cipher must be reversible - and it is undesirable for the output to be longer than the input.
Key schedule
In cryptography, the so-called product ciphers are a certain kind of cipher, where the (de-)ciphering of data is typically done as an iteration of rounds. The setup for each round is generally the same, except for round-specific fixed values called a round constant, and round-specific data derived from the cipher key called a round key. A key schedule is an algorithm that calculates all the round keys from the key. Some ciphers have simple key schedules.
Cryptography
Cryptography, or cryptology (from κρυπτός "hidden, secret"; and γράφειν graphein, "to write", or -λογία -logia, "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others.
Product cipher
In cryptography, a product cipher combines two or more transformations in a manner intending that the resulting cipher is more secure than the individual components to make it resistant to cryptanalysis. The product cipher combines a sequence of simple transformations such as substitution (S-box), permutation (P-box), and modular arithmetic. The concept of product ciphers is due to Claude Shannon, who presented the idea in his foundational paper, Communication Theory of Secrecy Systems.
Weak key
In cryptography, a weak key is a key, which, used with a specific cipher, makes the cipher behave in some undesirable way. Weak keys usually represent a very small fraction of the overall keyspace, which usually means that, a cipher key made by random number generation is very unlikely to give rise to a security problem. Nevertheless, it is considered desirable for a cipher to have no weak keys. A cipher with no weak keys is said to have a flat, or linear, key space.
Format-preserving encryption
In cryptography, format-preserving encryption (FPE), refers to encrypting in such a way that the output (the ciphertext) is in the same format as the input (the plaintext). The meaning of "format" varies. Typically only finite sets of characters are used; numeric, alphabetic or alphanumeric. For example: Encrypting a 16-digit credit card number so that the ciphertext is another 16-digit number. Encrypting an English word so that the ciphertext is another English word.
Pseudorandom permutation
In cryptography, a pseudorandom permutation (PRP) is a function that cannot be distinguished from a random permutation (that is, a permutation selected at random with uniform probability, from the family of all permutations on the function's domain) with practical effort. Let F be a mapping . F is a PRP if and only if For any , is a bijection from to , where . For any , there is an "efficient" algorithm to evaluate for any ,.
Skipjack (cipher)
In cryptography, Skipjack is a block cipher—an algorithm for encryption—developed by the U.S. National Security Agency (NSA). Initially classified, it was originally intended for use in the controversial Clipper chip. Subsequently, the algorithm was declassified. Skipjack was proposed as the encryption algorithm in a US government-sponsored scheme of key escrow, and the cipher was provided for use in the Clipper chip, implemented in tamperproof hardware.
Block cipher
In cryptography, a block cipher is a deterministic algorithm that operates on fixed-length groups of bits, called blocks. Block ciphers are the elementary building blocks of many cryptographic protocols. They are ubiquitous in the storage and exchange of data, where such data is secured and authenticated via encryption. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.