Intel Trusted Execution Technology (Intel TXT, formerly known as LaGrande Technology) is a computer hardware technology of which the primary goals are:
Attestation of the authenticity of a platform and its operating system.
Assuring that an authentic operating system starts in a trusted environment, which can then be considered trusted.
Provision of a trusted operating system with additional security capabilities not available to an unproven one.
Intel TXT uses a Trusted Platform Module (TPM) and cryptographic techniques to provide measurements of software and platform components so that system software as well as local and remote management applications may use those measurements to make trust decisions. It complements Intel Management Engine. This technology is based on an industry initiative by the Trusted Computing Group (TCG) to promote safer computing. It defends against software-based attacks aimed at stealing sensitive information by corrupting system or BIOS code, or modifying the platform's configuration.
The Trusted Platform Module (TPM) as specified by the TCG provides many security functions including special registers (called Platform Configuration Registers – PCRs) which hold various measurements in a shielded location in a manner that prevents spoofing. Measurements consist of a cryptographic hash using a Secure Hashing Algorithm (SHA); the TPM v1.0 specification uses the SHA-1 hashing algorithm. More recent TPM versions (v2.0+) call for SHA-2.
A desired characteristic of a cryptographic hash algorithm is that (for all practical purposes) the hash result (referred to as a hash digest or a hash) of any two modules will produce the same hash value only if the modules are identical.
Measurements can be of code, data structures, configuration, information, or anything that can be loaded into memory. TCG requires that code not be executed until after it has been measured. To ensure a particular sequence of measurements, hash measurements in a sequence are not written to different PCRs, but rather a PCR is "extended" with a measurement.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
BitLocker is a full volume encryption feature included with Microsoft Windows versions starting with Windows Vista. It is designed to protect data by providing encryption for entire volumes. By default, it uses the Advanced Encryption Standard (AES) algorithm in cipher block chaining (CBC) or "xor–encrypt–xor (XEX)-based Tweaked codebook mode with ciphertext Stealing" (XTS) mode with a 128-bit or 256-bit key. CBC is not used over the whole disk; it is applied to each individual sector.
Trusted Platform Module (TPM, also known as ISO/IEC 11889) is an international standard for a secure cryptoprocessor, a dedicated microcontroller designed to secure hardware through integrated cryptographic keys. The term can also refer to a chip conforming to the standard. One of Windows 11's system requirements is TPM 2.0. Microsoft has stated that this is to help increase security against firmware attacks. Trusted Platform Module (TPM) was conceived by a computer industry consortium called Trusted Computing Group (TCG).
Explores trusted computing, confidentiality, integrity, and side-channel attacks, emphasizing real-world examples and the challenges of ensuring security.
With the pervasive digitalization of modern life, we benefit from efficient access to information and services. Yet, this digitalization poses severe privacy challenges, especially for special-needs individuals. Beyond being a fundamental human right, priv ...
Keeping track of Internet latency is a classic measurement problem. Open measurement platforms like RIPE Atlas are a great solution, but they also face challenges: preventing network overload that may result from uncontrolled active measurements, and maint ...
Security and privacy-sensitive smartphone applications use trusted execution environments (TEEs) to protect sensitive operations from malicious code. By design, TEEs have privileged access to the entire system but expose little to no insight into their inn ...