In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.
A compound containing the epoxide functional group can be called an epoxy, epoxide, oxirane, and ethoxyline. Simple epoxides are often referred to as oxides. Thus, the epoxide of ethylene (C2H4) is ethylene oxide (C2H4O). Many compounds have trivial names; for instance, ethylene oxide is called "oxirane". Some names emphasize the presence of the epoxide functional group, as in the compound 1,2-epoxyheptane, which can also be called 1,2-heptene oxide.
A polymer formed from epoxide precursors is called an epoxy, but such materials do not contain epoxide groups (or contain only a few residual epoxy groups that remain unreacted in the formation of the resin).
The dominant epoxides industrially are ethylene oxide and propylene oxide, which are produced respectively on the scales of approximately 15 and 3 million tonnes/year.
The epoxidation of ethylene involves its reaction with oxygen. According to a reaction mechanism suggested in 1974 at least one ethylene molecule is totally oxidized for every six that are converted to ethylene oxide:
7 H2C=CH2 + 6 O2 -> 6 C2H4O + 2 CO2 + 2 H2O
The direct reaction of oxygen with alkenes is useful only for this epoxide. Modified heterogeneous silver catalysts are typically employed. Other alkenes fail to react usefully, even propylene, though TS-1 supported Au catalysts can perform propylene epoxidation selectively.
Aside from ethylene oxide, most epoxides are generated by treating alkenes with peroxide-containing reagents, which donate a single oxygen atom. Safety considerations weigh on these reactions because organic peroxides are prone to spontaneous decomposition or even combustion.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
Ethylene oxide is an organic compound with the formula . It is a cyclic ether and the simplest epoxide: a three-membered ring consisting of one oxygen atom and two carbon atoms. Ethylene oxide is a colorless and flammable gas with a faintly sweet odor. Because it is a strained ring, ethylene oxide easily participates in a number of addition reactions that result in ring-opening. Ethylene oxide is isomeric with acetaldehyde and with vinyl alcohol. Ethylene oxide is industrially produced by oxidation of ethylene in the presence of a silver catalyst.
α,β-Unsaturated carbonyl compounds are organic compounds with the general structure (O=CR)−Cα=Cβ-R. Such compounds include enones and enals. In these compounds the carbonyl group is conjugated with an alkene (hence the adjective unsaturated). Unlike the case for carbonyls without a flanking alkene group, α,β-unsaturated carbonyl compounds are susceptible to attack by nucleophiles at the β-carbon. This pattern of reactivity is called vinylogous. Examples of unsaturated carbonyls are acrolein (propenal), mesityl oxide, acrylic acid, and maleic acid.
In organic chemistry, enolates are organic anions derived from the deprotonation of carbonyl () compounds. Rarely isolated, they are widely used as reagents in the synthesis of organic compounds. Enolate anions are electronically related to allyl anions. The anionic charge is delocalized over the oxygen and the two carbon sites. Thus they have the character of both an alkoxide and a carbanion. Although they are often drawn as being simple salts, in fact they adopt complicated structures often featuring aggregates.
Explores asymmetric synthesis through hydroboration and epoxidation, emphasizing regioselectivity and stereoselectivity.
Delves into asymmetric reactions in organic chemistry, highlighting mechanisms, catalysts, and selectivity.
Explores enamine catalysis with various catalysts in organic reactions and the principles of phase-transfer catalysis.
The first chapter of this thesis describe the development of a general synthesis of ynimines, an under-exploited motif in organic chemistry. In the presence of an inexpensive copper catalyst and 2,2'-biquinoline, reaction of easily accessible O-acyloximes ...
This review describes the development of enantioselective methods for the ring opening of cyclopropanes. Both approaches based on the reaction of nonchiral cyclopropanes and (dynamic) kinetic resolutions and asymmetric transformations of chiral substrates ...
A chiral cyclopentadienyl (Cp-x) ligand featuring the semi-saturated H8-binaphthyl backbone as the chiral element was developed. Its application potential was demonstrated by (CpRhIII)-Rh-x-catalyzed C-H bond functionalization of acryl acids and allenes, e ...