Concept

Bootstrap model

Summary
The term "bootstrap model" is used for a class of theories that use very general consistency criteria to determine the form of a quantum theory from some assumptions on the spectrum of particles. It is a form of S-matrix theory. In the 1960s and '70s, the ever-growing list of strongly interacting particles — mesons and baryons — made it clear to physicists that none of these particles is elementary. Geoffrey Chew and others went so far as to question the distinction between composite and elementary particles, advocating a "nuclear democracy" in which the idea that some particles were more elementary than others was discarded. Instead, they sought to derive as much information as possible about the strong interaction from plausible assumptions about the S-matrix, which describes what happens when particles of any sort collide, an approach advocated by Werner Heisenberg two decades earlier. The reason the program had any hope of success was because of crossing, the principle that the forces between particles are determined by particle exchange. Once the spectrum of particles is known, the force law is known, and this means that the spectrum is constrained to bound states which form through the action of these forces. The simplest way to solve the consistency condition is to postulate a few elementary particles of spin less than or equal to one, and construct the scattering perturbatively through field theory, but this method does not allow for composite particles of spin greater than 1 and without the then undiscovered phenomenon of confinement, it is naively inconsistent with the observed Regge behavior of hadrons. Chew and followers believed that it would be possible to use crossing symmetry and Regge behavior to formulate a consistent S-matrix for infinitely many particle types. The Regge hypothesis would determine the spectrum, crossing and analyticity would determine the scattering amplitude (the forces), while unitarity would determine the self-consistent quantum corrections in a way analogous to including loops.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.