In inorganic chemistry, the cis effect is defined as the labilization (or destabilization) of CO ligands that are cis to other ligands. CO is a well-known strong pi-accepting ligand in organometallic chemistry that will labilize in the cis position when adjacent to ligands due to steric and electronic effects. The system most often studied for the cis effect is an octahedral complex M(CO)5X where X is the ligand that will labilize a CO ligand cis to it. Unlike the trans effect, which is most often observed in 4-coordinate square planar complexes, the cis effect is observed in 6-coordinate octahedral transition metal complexes. It has been determined that ligands that are weak sigma donors and non-pi acceptors seem to have the strongest cis-labilizing effects. Therefore, the cis effect has the opposite trend of the trans-effect, which effectively labilizes ligands that are trans to strong pi accepting and sigma donating ligands.
Group 6 and group 7 transition metal complexes M(CO)5X have been found to be the most prominent in regards to dissociation of the CO cis to ligand X. CO is a neutral ligand that donates 2 electrons to the complex, and therefore lacks anionic or cationic properties that would affect the electron count of the complex. For transition metal complexes that have the formula M(CO)5X, group 6 metals (M0, where the oxidation state of the metal is zero) paired with neutral ligand X, and group 7 metals (M+, where the oxidation state of the metal is +1), paired anionic ligands, will create very stable 18 electron complexes. Transition metal complexes have 9 valence orbitals, and 18 electrons will in turn fill these valences shells, creating a very stable complex, which satisfies the 18-electron rule. The cis-labilization of 18 e− complexes suggests that dissociation of ligand X in the cis position creates a square pyramidal transition state, which lowers the energy of the M(CO)4X complex, enhancing the rate of reaction. The scheme below shows the dissociation pathway of a CO ligand in the cis and trans position to the X, followed by the association of ligand Y.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometallic complexes.
Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are generally considered to be organometallic as well.
This course on homogeneous catalysis provide a detailed understanding of how these catalysts work at a mechanistic level and give examples of catalyst design for important reactions (hydrogenation, ol
The intermetallic compound PdGa has recently attracted considerable interest for combining high catalytic activity with high reaction selectivity in symmetric heterogeneous catalysis, in particular semi-hydrogenation of acetylene and methanol steam reformi ...
EPFL2020
Carbohydrate recognition by lectins governs critical host-microbe interactions. MpPA14 (Marinomonas primoryensis PA14 domain) lectin is a domain of a 1.5-MDa adhesin responsible for a symbiotic bacterium-diatom interaction in Antarctica. Here, we show that ...
Washington2021
, , , ,
Octahedral coordination cages of the general formula Pd6L1212 were obtained by combining Pd(CH3CN)42 with heteroditopic N-donor ligands. Four different ligands were employed. These ligands have 3-pyridyl donor groups at one end and 4-pyridyl, ...