An artificial neural network's learning rule or learning process is a method, mathematical logic or algorithm which improves the network's performance and/or training time. Usually, this rule is applied repeatedly over the network. It is done by updating the weights and bias levels of a network when a network is simulated in a specific data environment. A learning rule may accept existing conditions (weights and biases) of the network and will compare the expected result and actual result of the network to give new and improved values for weights and bias. Depending on the complexity of actual model being simulated, the learning rule of the network can be as simple as an XOR gate or mean squared error, or as complex as the result of a system of differential equations. The learning rule is one of the factors which decides how fast or how accurately the artificial network can be developed. Depending upon the process to develop the network there are three main models of machine learning: Unsupervised learning Supervised learning Reinforcement learning A lot of the learning methods in machine learning work similar to each other, and are based on each other, which makes it difficult to classify them in clear categories. But they can be broadly understood in 4 categories of learning methods, though these categories don't have clear boundaries and they tend to belong to multiple categories of learning methods - Hebbian - Neocognitron, Brain-state-in-a-box Gradient Descent - ADALINE, Hopfield Network, Recurrent Neural Network Competitive - Learning Vector Quantisation, Self-Organising Feature Map, Adaptive Resonance Theory Stochastic - Boltzmann Machine, Cauchy Machine It is to be noted that though these learning rules might appear to be based on similar ideas, they do have subtle differences, as they are a generalisation or application over the previous rule, and hence it makes sense to study them separately based on their origins and intents. Developed by Donald Hebb in 1949 to describe biological neuron firing.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.