Summary
An artificial neural network's learning rule or learning process is a method, mathematical logic or algorithm which improves the network's performance and/or training time. Usually, this rule is applied repeatedly over the network. It is done by updating the weights and bias levels of a network when a network is simulated in a specific data environment. A learning rule may accept existing conditions (weights and biases) of the network and will compare the expected result and actual result of the network to give new and improved values for weights and bias. Depending on the complexity of actual model being simulated, the learning rule of the network can be as simple as an XOR gate or mean squared error, or as complex as the result of a system of differential equations. The learning rule is one of the factors which decides how fast or how accurately the artificial network can be developed. Depending upon the process to develop the network there are three main models of machine learning: Unsupervised learning Supervised learning Reinforcement learning A lot of the learning methods in machine learning work similar to each other, and are based on each other, which makes it difficult to classify them in clear categories. But they can be broadly understood in 4 categories of learning methods, though these categories don't have clear boundaries and they tend to belong to multiple categories of learning methods - Hebbian - Neocognitron, Brain-state-in-a-box Gradient Descent - ADALINE, Hopfield Network, Recurrent Neural Network Competitive - Learning Vector Quantisation, Self-Organising Feature Map, Adaptive Resonance Theory Stochastic - Boltzmann Machine, Cauchy Machine It is to be noted that though these learning rules might appear to be based on similar ideas, they do have subtle differences, as they are a generalisation or application over the previous rule, and hence it makes sense to study them separately based on their origins and intents. Developed by Donald Hebb in 1949 to describe biological neuron firing.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
End-to-End Vector: Lecture 4
Explores the concept of end-to-end vector and its practical implications.
Related MOOCs (4)
Neuronal Dynamics - Computational Neuroscience of Single Neurons
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Neuronal Dynamics 2- Computational Neuroscience: Neuronal Dynamics of Cognition
This course explains the mathematical and computational models that are used in the field of theoretical neuroscience to analyze the collective dynamics of thousands of interacting neurons.
Show more