Related concepts (60)
Beamline
In accelerator physics, a beamline refers to the trajectory of the beam of particles, including the overall construction of the path segment (guide tubes, diagnostic devices) along a specific path of an accelerator facility. This part is either the line in a linear accelerator along which a beam of particles travels, or the path leading from particle generator (e.g. a cyclic accelerator, synchrotron light sources, cyclotrons, or spallation sources) to the experimental end-station.
Storage ring
A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating typically for many hours. Storage of a particular particle depends upon the mass, momentum and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons. Storage rings are most often used to store electrons that radiate synchrotron radiation. Over 50 facilities based on electron storage rings exist and are used for a variety of studies in chemistry and biology.
Unparticle physics
In theoretical physics, unparticle physics is a speculative theory that conjectures a form of matter that cannot be explained in terms of particles using the Standard Model of particle physics, because its components are scale invariant. Howard Georgi proposed this theory in two 2007 papers, "Unparticle Physics" and "Another Odd Thing About Unparticle Physics". His papers were followed by further work by other researchers into the properties and phenomenology of unparticle physics and its potential impact on particle physics, astrophysics, cosmology, CP violation, lepton flavour violation, muon decay, neutrino oscillations, and supersymmetry.
B meson
In particle physics, B mesons are mesons composed of a bottom antiquark and either an up (_B+), down (_B0), strange (_Strange B0) or charm quark (_Charmed B+). The combination of a bottom antiquark and a top quark is not thought to be possible because of the top quark's short lifetime. The combination of a bottom antiquark and a bottom quark is not a B meson, but rather bottomonium, which is something else entirely. Each B meson has an antiparticle that is composed of a bottom quark and an up (_B-), down (_AntiB0), strange (_Strange antiB0) or charm (_Charmed b-) antiquark respectively.
Ultra-high-energy cosmic ray
In astroparticle physics, an ultra-high-energy cosmic ray (UHECR) is a cosmic ray with an energy greater than 1 EeV (1018 electronvolts, approximately 0.16 joules), far beyond both the rest mass and energies typical of other cosmic ray particles. These particles are extremely rare; between 2004 and 2007, the initial runs of the Pierre Auger Observatory (PAO) detected 27 events with estimated arrival energies above 5.7e19eV, that is, about one such event every four weeks in the 3000 km2 area surveyed by the observatory.
Dipole magnet
A dipole magnet is the simplest type of magnet. It has two poles, one north and one south. Its magnetic field lines form simple closed loops which emerge from the north pole, re-enter at the south pole, then pass through the body of the magnet. The simplest example of a dipole magnet is a bar magnet. In particle accelerators, a dipole magnet is the electromagnet used to create a homogeneous magnetic field over some distance.
Quadrupole magnet
Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing.
Bevatron
The Bevatron was a particle accelerator — specifically, a weak-focusing proton synchrotron — at Lawrence Berkeley National Laboratory, U.S., which began operating in 1954. The antiproton was discovered there in 1955, resulting in the 1959 Nobel Prize in physics for Emilio Segrè and Owen Chamberlain. It accelerated protons into a fixed target, and was named for its ability to impart energies of billions of eV. (Billions of eV Synchrotron.
Budker Institute of Nuclear Physics
The Budker Institute of Nuclear Physics (BINP) is one of the major centres of advanced study of nuclear physics in Russia. It is located in the Siberian town Akademgorodok, on Academician Lavrentiev Avenue. The institute was founded by Gersh Budker in 1959. Following his death in 1977, the institute was renamed in honour of Budker. Despite its name, the centre was not involved either with military atomic science or nuclear reactors instead, its concentration was on high-energy physics (particularly plasma physics) and particle physics.
Large extra dimensions
In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a membrane in a higher dimensional space.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.