Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Sensitivity coefficients calculated with Monte Carlo neutron transport codes are subject to statistical fluctuations. The fluctuations affect parameters that are calculated with the sensitivity coefficients. The convergence study presented here describes t ...
We hypothesize that optimal deep neural networks (DNN) class-conditional posterior probabilities live in a union of low-dimensional subspaces. In real test conditions, DNN posteriors encode uncertainties which can be regarded as a superposition of unstruct ...
Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probabilit ...
We examine the cosmological information available from the 1-point probability density function (PDF) of the weak-lensing convergence field, utilizing fast L-PICOLA simulations and a Fisher analysis. We find competitive constraints in the Omega(m)-sigma(8) ...
Mean Field inference is central to statistical physics. It has attracted much interest in the Computer Vision community to efficiently solve problems expressible in terms of large Conditional Random Fields. However, since it models the posterior probabilit ...
Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DN ...
Studying the complexity of distributed algorithms typically boils down to evaluating how the number of messages exchanged (resp. communication steps performed or shared memory operations executed) by nodes to reliably achieve some common task, evolves with ...
Model-based approaches to Speaker Verification (SV), such as Joint Factor Analysis (JFA), i-vector and relevance Maximum-a-Posteriori (MAP), have shown to provide state-of-the-art performance for text-dependent systems with fixed phrases. The performance o ...
In the last decade, i-vector and Joint Factor Analysis (JFA) approaches to speaker modeling have become ubiquitous in the area of automatic speaker recognition. Both of these techniques involve the computation of posterior probabilities, using either Gauss ...
When presented with a difficult perceptual decision, human observers are able to make metacognitive judgements of subjective certainty. Such judgements can be made independently of and prior to any overt response to a sensory stimulus, presumably via inter ...