Summary
Poliovirus, the causative agent of polio (also known as poliomyelitis), is a serotype of the species Enterovirus C, in the family of Picornaviridae. There are three poliovirus serotypes: types 1, 2, and 3. Poliovirus is composed of an RNA genome and a protein capsid. The genome is a single-stranded positive-sense RNA (+ssRNA) genome that is about 7500 nucleotides long. The viral particle is about 30 nm in diameter with icosahedral symmetry. Because of its short genome and its simple composition—only RNA and a nonenveloped icosahedral protein coat that encapsulates it—poliovirus is widely regarded as the simplest significant virus. Poliovirus was first isolated in 1909 by Karl Landsteiner and Erwin Popper. The structure of the virus was first elucidated in 1958 using X-ray diffraction by a team at Birkbeck College led by Rosalind Franklin, showing the polio virus to have icosahedral symmetry. In 1981, the poliovirus genome was published by two different teams of researchers: by Vincent Racaniello and David Baltimore at MIT and by Naomi Kitamura and Eckard Wimmer at Stony Brook University. The three-dimensional structure of poliovirus was determined in 1985 by James Hogle at Scripps Research Institute using X-ray crystallography. Poliovirus is one of the most well-characterized viruses, and has become a useful model system for understanding the biology of RNA viruses. Poliovirus infects human cells by binding to an immunoglobulin-like receptor, CD155 (also known as the poliovirus receptor or PVR) on the cell surface. Interaction of poliovirus and CD155 facilitates an irreversible conformational change of the viral particle necessary for viral entry. Following attachment to the host cell membrane, entry of the viral nucleic acid was thought to occur one of two ways: via the formation of a pore in the plasma membrane through which the RNA is then "injected" into the host cell cytoplasm, or via virus uptake by receptor-mediated endocytosis. Recent experimental evidence supports the latter hypothesis and suggests that poliovirus binds to CD155 and is taken up by endocytosis.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (4)
Vaccination: From Jenner to Modern Immunization
Explores the history, impact, and challenges of vaccination, from Jenner to modern immunization.
Treatments and VaccinesMOOC: Introduction à l'immunologie (part 1)
Discusses treatments, vaccines, and the importance of prevention against severe forms of Covid-19.
Show more
Related publications (37)