Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In recent years, there has been a surge of interest in predicting computed activation barriers, to enable the acceleration of the automated exploration of reaction networks. Consequently, various predictive approaches have emerged, ranging from graph-based ...
In this paper, we propose a novel approach that employs kinetic equations to describe the collective dynamics emerging from graph-mediated pairwise interactions in multi-agent systems. We formally show that for large graphs and specific classes of interact ...
Graph machine learning offers a powerful framework with natural applications in scientific fields such as chemistry, biology and material sciences. By representing data as a graph, we encode the prior knowledge that the data is composed of a set of entitie ...
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
This work addresses the problem of learning the topology of a network from the signals emitted by the network nodes. These signals are generated over time through a linear diffusion process, where neighboring nodes exchange messages according to the underl ...
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis ...
This work introduces DiGress, a discrete denoising diffusion model for generating graphs with categorical node and edge attributes. Our model utilizes a discrete diffusion process that progressively edits graphs with noise, through the process of adding or ...
Spectral algorithms are some of the main tools in optimization and inference problems on graphs. Typically, the graph is encoded as a matrix and eigenvectors and eigenvalues of the matrix are then used to solve the given graph problem. Spectral algorithms ...
Various forms of real-world data, such as social, financial, and biological networks, can berepresented using graphs. An efficient method of analysing this type of data is to extractsubgraph patterns, such as cliques, cycles, and motifs, from graphs. For i ...
EPFL2023
Many sports leagues organize their competitions as round-robin tournaments. This tournament design has a rich mathematical structure that has been studied in the literature over the years. We review some of the main properties and fundamental scheduling me ...