Girard Desargues (ʒiʁaʁ dezaʁɡ; 21 February 1591 - September 1661) was a French mathematician and engineer, who is considered one of the founders of projective geometry. Desargues' theorem, the Desargues graph, and the crater Desargues on the Moon are named in his honour.
Born in Lyon, Desargues came from a family devoted to service to the French crown. His father was a royal notary, an investigating commissioner of the Seneschal's court in Lyon (1574), the collector of the tithes on ecclesiastical revenues for the city of Lyon (1583) and for the diocese of Lyon.
Girard Desargues worked as an architect from 1645. Prior to that, he had worked as a tutor and may have served as an engineer and technical consultant in the entourage of Richelieu.
As an architect, Desargues planned several private and public buildings in Paris and Lyon. As an engineer, he designed a system for raising water that he installed near Paris. It was based on the use of the epicycloidal wheel, the principle of which was unrecognized at the time.
His research on perspective and geometrical projections can be seen as a culmination of centuries of scientific inquiry across the classical epoch in optics that stretched from al-Hasan Ibn al-Haytham (Alhazen) to Johannes Kepler, and going beyond a mere synthesis of these traditions with Renaissance perspective theories and practices.
His work was rediscovered and republished in 1864. A collection of his works was published in 1951, and the 1864 compilation remains in print. One notable work, often cited by others in mathematics, is "Rough draft for an essay on the results of taking plane sections of a cone" (1639).
Late in his life, Desargues published a paper with the cryptic title of DALG. The most common theory about what this stands for is Des Argues, Lyonnais, Géometre (proposed by Henri Brocard).
He died in Lyon.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours entend exposer les fondements de la géométrie à un triple titre :
1/ de technique mathématique essentielle au processus de conception du projet,
2/ d'objet privilégié des logiciels de concept
In mathematics, a projective plane is a geometric structure that extends the concept of a plane. In the ordinary Euclidean plane, two lines typically intersect at a single point, but there are some pairs of lines (namely, parallel lines) that do not intersect. A projective plane can be thought of as an ordinary plane equipped with additional "points at infinity" where parallel lines intersect. Thus any two distinct lines in a projective plane intersect at exactly one point.
In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, projective space, and a selective set of basic geometric concepts. The basic intuitions are that projective space has more points than Euclidean space, for a given dimension, and that geometric transformations are permitted that transform the extra points (called "points at infinity") to Euclidean points, and vice-versa.
Explores the construction and variants of elliptical curves, including historical stonecutting methods and architectural considerations.
Explores modern geometric transformations and invariances, focusing on projective geometry and historical developments.
Explores the historical and practical applications of geometry in architecture, emphasizing key geometric principles in architectural design.
Here Bernard Cache provides a detailed analysis of a paper written in 1636 by the French mathematician, architect and engineer, Girard Desargues. Desargues is best known as the founder of projective geometry. Cache explains how he initally developed this s ...