Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
For the past twenty years, scientific visualization has assisted simulation-based research to explore problems of organized complexity. Environmental research, social sciences, astronomy, and modern physics have exploited the increasing power of computer g ...
Diffusion magnetic resonance studies of the brain are typically performed using volume coils. Although in human brain this leads to a near optimal filling factor, studies of rodent brain must contend with the fact that only a fraction of the head volume ca ...
The neocortex makes up over 80% of the mammalian brain and is responsible for higher cognitive functions, processing of sensory inputs and orchestration of complex motor outputs. It is a 6-layered structure composed of billions of morphologically and elect ...
The field of neuroscience is witnessing a huge influx of experimental data thanks to the improvements in the data acquisition tools and techniques. Most of this data is being collected by thousands of experimenters located in various institutions around th ...
Magnetic resonance imaging (MRI) is increasingly being used in medical settings because of its ability to produce, non-invasively, high quality images of the inside of the human body. Since its introduction in early 70’s, more and more complex acquisition ...
Nuclear magnetic resonance (NMR) can be used in-vivo in a vast array of applications, such as anatomical imaging (magnetic resonance imaging, MRI), localized chemical composition characterization (magnetic resonance spectroscopy, MRS), cellular structure a ...
In activation-induced manganese-enhanced MRI (AIM-MRI) experiments, differential accumulation of Mn in activated and silent brain areas is generally assessed using T(1)-weighted images and quantified by the enhancement of signal intensity (SI), calculated ...
Full signal intensity H-1-[C-13] NMR spectroscopy, combining a preceding C-13-editing block based on an inversion BISEP (B-1-insensitive spectral editing pulse) with a spin-echo coherence-based localization, was developed and implemented at 14.1 T. C-13 ed ...
Quantification of short-echo time proton magnetic resonance spectroscopy results in >18 metabolite concentrations (neurochemical profile). Their quantification accuracy depends on the assessment of the contribution of macromolecule (MM) resonances, previou ...
Recent findings identified electroencephalography (EEG) microstates as the electrophysiological correlates of fMRI resting-state networks. Microstates are defined as short periods (100 ms) during which the EEG scalp topography remains quasi-stable; that is ...