Henry (unit)The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same time as Michael Faraday (1791–1867) in England.
Hamiltonian (quantum mechanics)In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.
Vector potentialIn vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a scalar potential, which is a scalar field whose gradient is a given vector field. Formally, given a vector field v, a vector potential is a vector field A such that If a vector field v admits a vector potential A, then from the equality (divergence of the curl is zero) one obtains which implies that v must be a solenoidal vector field. Let be a solenoidal vector field which is twice continuously differentiable.
GammaGamma 'gæmə (uppercase , lowercase ; γάμμα gámma) is the third letter of the Greek alphabet. In the system of Greek numerals it has a value of 3. In Ancient Greek, the letter gamma represented a voiced velar stop ɡ. In Modern Greek, this letter represents either a voiced velar fricative ɣ or a voiced palatal fricative ʝ (while /g/ in foreign words is instead commonly transcribed as γκ). In the International Phonetic Alphabet and other modern Latin-alphabet based phonetic notations, it represents the voiced velar fricative.
AmmeterAn ammeter (abbreviation of Ampere meter) is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured. Instruments used to measure smaller currents, in the milliampere or microampere range, are designated as milliammeters or microammeters.
Charged particleIn physics, a charged particle is a particle with an electric charge. It may be an ion, such as a molecule or atom with a surplus or deficit of electrons relative to protons. It can also be an electron or a proton, or another elementary particle, which are all believed to have the same charge (except antimatter). Another charged particle may be an atomic nucleus devoid of electrons, such as an alpha particle. A plasma is a collection of charged particles, atomic nuclei and separated electrons, but can also be a gas containing a significant proportion of charged particles.
Maxwell (unit)The maxwell (symbol: Mx) is the CGS (centimetre–gram–second) unit of magnetic flux (Φ). The unit name honours James Clerk Maxwell, who presented a unified theory of electromagnetism. The maxwell was recommended as a CGS unit at the International Electrical Congress held in 1900 at Paris. This practical unit was previously called a line, reflecting Faraday's conception of the magnetic field as curved lines of magnetic force, which he designated as line of magnetic induction.
Ampère's force lawIn magnetostatics, the force of attraction or repulsion between two current-carrying wires (see first figure below) is often called Ampère's force law. The physical origin of this force is that each wire generates a magnetic field, following the Biot–Savart law, and the other wire experiences a magnetic force as a consequence, following the Lorentz force law.
Lenz's lawLenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after physicist Emil Lenz, who formulated it in 1834. It is a qualitative law that specifies the direction of induced current, but states nothing about its magnitude.
Four-forceIn the special theory of relativity, four-force is a four-vector that replaces the classical force. The four-force is defined as the rate of change in the four-momentum of a particle with respect to the particle's proper time: For a particle of constant invariant mass , where is the four-velocity, so we can relate the four-force with the four-acceleration as in Newton's second law: Here and where , and are 3-space vectors describing the velocity, the momentum of the particle and the force acting on it respectively.