Bayesian information criterionIn statistics, the Bayesian information criterion (BIC) or Schwarz information criterion (also SIC, SBC, SBIC) is a criterion for model selection among a finite set of models; models with lower BIC are generally preferred. It is based, in part, on the likelihood function and it is closely related to the Akaike information criterion (AIC). When fitting models, it is possible to increase the maximum likelihood by adding parameters, but doing so may result in overfitting.
Goodness of fitThe goodness of fit of a statistical model describes how well it fits a set of observations. Measures of goodness of fit typically summarize the discrepancy between observed values and the values expected under the model in question. Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test).
Statistical model validationIn statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model. To combat this, model validation is used to test whether a statistical model can hold up to permutations in the data.
Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Deviance information criterionThe deviance information criterion (DIC) is a hierarchical modeling generalization of the Akaike information criterion (AIC). It is particularly useful in Bayesian model selection problems where the posterior distributions of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation. DIC is an asymptotic approximation as the sample size becomes large, like AIC. It is only valid when the posterior distribution is approximately multivariate normal.
Akaike information criterionThe Akaike information criterion (AIC) is an estimator of prediction error and thereby relative quality of statistical models for a given set of data. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. Thus, AIC provides a means for model selection. AIC is founded on information theory. When a statistical model is used to represent the process that generated the data, the representation will almost never be exact; so some information will be lost by using the model to represent the process.
Bayes factorThe Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in questions can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the (integrated) marginal likelihood rather than the maximized likelihood.
Likelihood-ratio testIn statistics, the likelihood-ratio test assesses the goodness of fit of two competing statistical models, specifically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods. If the constraint (i.e., the null hypothesis) is supported by the observed data, the two likelihoods should not differ by more than sampling error. Thus the likelihood-ratio test tests whether this ratio is significantly different from one, or equivalently whether its natural logarithm is significantly different from zero.
Feature selectionFeature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Stylometry and DNA microarray analysis are two cases where feature selection is used. It should be distinguished from feature extraction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret by researchers/users, shorter training times, to avoid the curse of dimensionality, improve data's compatibility with a learning model class, encode inherent symmetries present in the input space.
Relative likelihoodIn statistics, when selecting a statistical model for given data, the relative likelihood compares the relative plausibilities of different candidate models or of different values of a parameter of a single model. Assume that we are given some data x for which we have a statistical model with parameter θ. Suppose that the maximum likelihood estimate for θ is . Relative plausibilities of other θ values may be found by comparing the likelihoods of those other values with the likelihood of .