Related courses (15)
BIOENG-444: Advanced bioengineering methods laboratory
Advanced Bioengineering Methods Laboratories (ABML) offers laboratory practice and data analysis. These active sessions present a variety of techniques employed in the bioengineering field and matchin
CH-401: Advanced nuclear magnetic resonance
Principles of Magnetic Resonance Imaging (MRI) and applications to medical imaging. Principles of modern multi-dimensional NMR in liquids and solids. Structure determination of proteins & materials. M
CH-413: Nanobiotechnology
This course concerns modern bioanalytical techniques to investigate biomolecules both in vitro and in vivo, including recent methods to image, track and manipulate single molecules. We cover the basic
ChE-311: Biochemical engineering
This course introduces the basic principles of bioprocess engineering and highlights the similarities and differences with chemical engineering. Without going into the fundamentals, it proposes an ove
EE-517: Bio-nano-chip design
Introduction to heterogeneous integration for Nano-Bio-CMOS sensors on Chip. Understanding and designing of active Bio/CMOS interfaces powered by nanostructures.
CH-335: Asymmetric synthesis and retrosynthesis
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
CH-311: Macromolecular structure and interactions
This course covers the basic biophysical principles governing the thermodynamic and kinetic properties of biomacromolecules involved in chemical processes of life. The course is held in English.
BIO-315: Structural biology
The main focus of this course is on the molecular interactions defining the structure, dynamics and function of biological systems. The principal experimental and computational techniques used in stru
CH-210: Biochemistry
Les constituants biochimiques de l'organisme, protéines, glucides, lipides, à la lumière de l'évolution des concepts et des progrès en biologie moléculaire et génétique, sont étudiés.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.