Summary
In cryptography and computer security, a length extension attack is a type of attack where an attacker can use Hash(message1) and the length of message1 to calculate Hash(message1 ‖ message2) for an attacker-controlled message2, without needing to know the content of message1. This is problematic when the hash is used as a message authentication code with construction Hash(secret ‖ message), and message and the length of secret is known, because an attacker can include extra information at the end of the message and produce a valid hash without knowing the secret. Algorithms like MD5, SHA-1 and most of SHA-2 that are based on the Merkle–Damgård construction are susceptible to this kind of attack. Truncated versions of SHA-2, including SHA-384 and SHA-512/256 are not susceptible, nor is the SHA-3 algorithm. HMAC also uses a different construction and so is not vulnerable to length extension attacks. The vulnerable hashing functions work by taking the input message, and using it to transform an internal state. After all of the input has been processed, the hash digest is generated by outputting the internal state of the function. It is possible to reconstruct the internal state from the hash digest, which can then be used to process the new data. In this way, one may extend the message and compute the hash that is a valid signature for the new message. A server for delivering waffles of a specified type to a specific user at a location could be implemented to handle requests of the given format: Original Data: count=10&lat=37.351&user_id=1&long=-119.827&waffle=eggo Original Signature: 6d5f807e23db210bc254a28be2d6759a0f5f5d99 The server would perform the request given (to deliver ten waffles of type eggo to the given location for user "1") only if the signature is valid for the user. The signature used here is a MAC, signed with a key not known to the attacker. (This example is also vulnerable to a replay attack, by sending the same request and signature a second time.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.