Connected sumIn mathematics, specifically in topology, the operation of connected sum is a geometric modification on manifolds. Its effect is to join two given manifolds together near a chosen point on each. This construction plays a key role in the classification of closed surfaces. More generally, one can also join manifolds together along identical submanifolds; this generalization is often called the fiber sum. There is also a closely related notion of a connected sum on knots, called the knot sum or composition of knots.
Borromean ringsIn mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross.
Figure-eight knot (mathematics)In knot theory, a figure-eight knot (also called Listing's knot) is the unique knot with a crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot. The name is given because tying a normal figure-eight knot in a rope and then joining the ends together, in the most natural way, gives a model of the mathematical knot.
Three-dimensional spaceIn geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, the Euclidean n-space of dimension n=3 that models physical space. More general three-dimensional spaces are called 3-manifolds. Technically, a tuple of n numbers can be understood as the Cartesian coordinates of a location in a n-dimensional Euclidean space.
Linkless embeddingIn topological graph theory, a mathematical discipline, a linkless embedding of an undirected graph is an embedding of the graph into three-dimensional Euclidean space in such a way that no two cycles of the graph are linked. A flat embedding is an embedding with the property that every cycle is the boundary of a topological disk whose interior is disjoint from the graph. A linklessly embeddable graph is a graph that has a linkless or flat embedding; these graphs form a three-dimensional analogue of the planar graphs.
Geometric topologyIn mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of simple homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently.
Knot polynomialIn the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot. The first knot polynomial, the Alexander polynomial, was introduced by James Waddell Alexander II in 1923. Other knot polynomials were not found until almost 60 years later. In the 1960s, John Conway came up with a skein relation for a version of the Alexander polynomial, usually referred to as the Alexander–Conway polynomial.
UnlinkIn the mathematical field of knot theory, an unlink is a link that is equivalent (under ambient isotopy) to finitely many disjoint circles in the plane. An n-component link L ⊂ S3 is an unlink if and only if there exists n disjointly embedded discs Di ⊂ S3 such that L = ∪i∂Di. A link with one component is an unlink if and only if it is the unknot. The link group of an n-component unlink is the free group on n generators, and is used in classifying Brunnian links. The Hopf link is a simple example of a link with two components that is not an unlink.
Ambient isotopyIn the mathematical subject of topology, an ambient isotopy, also called an h-isotopy, is a kind of continuous distortion of an ambient space, for example a manifold, taking a submanifold to another submanifold. For example in knot theory, one considers two knots the same if one can distort one knot into the other without breaking it. Such a distortion is an example of an ambient isotopy. More precisely, let and be manifolds and and be embeddings of in .
Knot invariantIn the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a knot invariant is a rule that assigns to any knot K a quantity φ(K) such that if K and are equivalent then φ(K) = φ().